

European Journal of Histochemistry

SUPPLEMENTARY MATERIAL

DOI: <u>10.4081/ejh.2022.3534</u>

Expression profile of the zinc transporter ZnT3 in taste cells of rat circumvallate papillae and its role in zinc release, a potential mechanism for taste stimulation

Kentaro Nishida,^{1,2} Saho Bansho,¹ Akiko Ikukawa,¹ Teruyo Kubota,¹ Akihiro Ohishi,¹ Kazuki Nagasawa¹

¹Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Kyoto ²Department of Integrative Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan

Correspondence: Kentaro Nishida, Ph.D., Department of Integrative Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan. Tel. +81-72-807-3016 - Fax: +81-72-807-3016. E-mail: <u>kentaro.nishida@pharm.setsunan.ac.jp</u>

Key words: zinc; zinc transporter; taste cell; taste bud; circumvallate papilla; lingual epithelium; taste signaling.

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries should be directed to the corresponding author for the article.

Supplementary Figure 1.

Functional expression of TRPA1 in HEK293T/hTRPA1 stable cells. A, B) To evaluate the functional expression of TRPA1, HEK293T and HEK293T/h*TRPA*1 cells were treated with 100 μ M AITC, a TRPA1 agonist, and 150 μ M HC-030031, a TRPA1 antagonist; to validate the [Ca²⁺]_i response, cells were treated with a calcium ionophore (4 μ M ionomycin Ca). C) Cells were treated with 100 μ M AITC and 4 μ M ionomycin under Ca²⁺-free conditions.

Supplementary Figure 2.

Effect of zinc administration on $[Ca^{2+}]_i$ in HEK293T/hT*RPA1* stable cells. A) Time courses of 10 and 100 μ M ZnCl₂-evoked $[Ca^{2+}]_i$ HEK293T cells and HEK293T/hT*RPA1* stable cells; to evaluate whether HEK293T/hTRPA1 stable cells were zinc-sensitive, cells were treated with 10 μ M ZnCl₂ and 100 μ M ZnCl₂; to validate the $[Zn^{2+}]_i$ response, cells were treated with 5 μ M zinc pyrithione (ZnPy) as a zinc ionophore. B) ZnCl₂ was applied under Ca²⁺-free conditions to validate the $[Ca^{2+}]_i$ response.

Supplementary Figure 3.

Representative time-lapse data on zinc release from isolated taste cells by taste stimuli. Left schemes show each experimental condition (A–E). Representative time-lapse analysis of $[Ca^{2+}]_i$ in Fluo-4/AM-loaded HEK293T/hTRPA1 stable cells without (A) or with taste cells stimulated by the taste mix solution in the absence (B) or presence of 100 µM MgEDTA (C; an extracellular zinc chelator) or 100 µM ZnEDTA (D; a negative chelator without extracellular zinc-chelating ability). Data are presented as a representative image of at least three independent experiments. As a negative control, the recording medium alone was used to stimulate Fluo-4/AM-loaded HEK293T/hTRPA1 stable taste cells (E). The percentages of taste stimuli or medium-responding cells are shown in each panel. Fluo-4/AM-loaded HEK293T/hTRPA1 stable cells were considered responders when $[Ca^{2+}]_i$ was more than 2-fold higher than the basal $[Ca^{2+}]_i$ levels before taste stimuli.

pagepress

Supplementary Figure 4.

Immunohistochemical analysis of ZnT3 and NTPDase2, PLC- β 2, or AADC in longitudinal sections through the circumvallate papillae. Representative photomicrographs for double staining of ZnT3 (green) and the type I cell marker NTPDase2 (A; red), type II cell marker PLC- β 2 (B; red), or type III cell marker AADC (C; red) are shown. Arrowheads show the colocalization of ZnT3 and taste cell markers in the cell bodies of taste cells. Data are presented as a typical image of three independent experiments. Scale bars: 50 µm.

