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The present review summarizes data on the accumulation of
DNA strand breaks in differentiating cells. Large 50 Kbp free
DNA fragments were observed by several research teams in
non-apoptotic insect, mammal and plant cells. A more inten-
sive DNA breakage was observed during maturation of sper-
matides, embryo development, and differentiation of
myotubes, epidermal cells, lymphocytes and neutrophils. In
general, accumulation of DNA strand breaks in differentiat-
ing cells cannot be attributed to decrease of the DNA repair
efficiency. Poly(ADP)ribose synthesis often follows the DNA
breakage in differentiating cells. We hypothesize that DNA
fragmentation is an epigenetic tool for regulation of the dif-
ferentiation process. Scarce data on localization of the dif-
ferentiation-associated DNA strand breaks indicate their pre-
ferred accumulation in specific DNA sequences including the
nuclear matrix attachment sites and repeats. Recent data on
non-apoptotic functions of caspases provide more evidence
for possible existence of a DNA breakage mechanism in dif-
ferentiating cells resembling the initial stage of apoptosis.
Excision of methylated cytosine and recombination are other
possible explanations of the phenomenon. Elucidation of
mechanisms of differentiation-induced DNA strand breaks
appears to possess considerable research potential.
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Evidence for spontaneous fragmentation of DNA in
eukaryotic cells

The arrival of the post-genomic era is marked by
increasing interest in epigenetic mechanisms of
genome regulation. In the present review we would
like to remind the scientific community about the
existence of a probable regulatory function for DNA
strand breaks. This concept was developed in the
eighties, but later the importance of these findings
was shadowed by the boom in apoptosis research.
Normal functional activity of the cell is inevitably
followed by formation of DNA strand breaks or by
modifications of DNA structure that can be regis-
tered as DNA lesions. Meiotic recombination and
V(D)J-recombination in differentiation of lympho-
cytes are impossible without formation of DNA
strand breaks (de la Roche Saint-Andre, 2005).
Moreover, DNA is permanently damaged by normal
cell metabolites (Marnett, Plastaras, 2001). It is
considered that up to 50 single-strand breaks are
formed in each mammalian cell per minute, this
gives up to 3 000 breaks per cell cycle, resulting in
formation of 50 double-strand breaks per cycle
(Vilenchik, Knudson, 2000; 2003). DNA replication
and action of topoisomerases is also followed by
interruptions of DNA integrity (Eastman, Barry,
1992). Some authors believe that eukaryotic DNA
is interrupted by protein (Szabo, 1995) or lipid
(Struchkov et al., 2002) linkers. Interruptions in
DNA structure leads to formation of free 50-100
Kbp fragments (Solov'yan et al., 1997). The con-
cept of forum DNA revealed as a fast-migrating
fraction during pulse-field electrophoresis assumes
that the fraction is formed due to inevitable inci-
sions performed by endonucleases in the course of
DNA deproteinisation (Tchurikov, Ponomarenko,
1992; Tchurikov et al., 1998; Tchurikov et al.,
2004). DNA fragments of 50 Kbp were revealed in
proliferating cultured mammalian cells of different
origin with no signs of cell death (Szabo, 1995).
Moreover, the same team has proved the existence
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of a single-strand break on every 50 Kbp (Varga et
al., 1999), these breaks can be revealed by
TUNEL-assay if the preparation is treated by pro-
tease, indicating existence of the protein linkers
(Gal et al., 2000). Spontaneous double strand DNA
breaks were identified in U937 and Molt-4 cell cul-
tures using a TUNEL assay modified for electron
microscopy (E. Falcieri, personal communication).
One of the authors has observed individual peculi-
arities in number of single-strand and double-
strand DNA breaks as well as large-scale fragmen-
tation of DNA in Xenopus erythrocytes; blood was
taken from alive animals, and the pattern of DNA
fragmentation was reproduced in sequential analy-
ses (Figure 1). On Figure 1a, lane 2 fraction of
small single-stranded DNA fragments is clearly vis-
ible, it was never observed in another animal (lane
1), it means that erythrocyte DNA of animal 2 con-
tains more single-strand DNA breaks compared to
DNA of animal 1. Low-voltage electrophoresis in
neutral conditions indicates that DNA of two ani-
mals (Figure 1b, lanes 2 and 3) contains a fast-
migrating fraction absent in the third animal (lane
4). In some toads, pulse-field electrophoresis
revealed a fast-migrating fraction (300 Kbp.–
2000 Kbp; Figure 1d, lane 2), however this fraction
was never observed in other individuals (Figure 1d,
lane; Sjakste, 1997).Thus DNA in eukaryotic cells
always contains a distinct number of DNA strand
breaks; later we will try to analyze if these breaks
can have some functional significance.

DNA strand breaks in differentiation 
Germinal cells

Human sperm cells contain about 12.7 times
more breaks and other lesions compared to somat-
ic cells, namely lymphocytes (Muriel et al., 2004).
In spermatocytes (diploid precursors of sper-
matids) the maximal number of DNA strand breaks
is observed in early stages of development (Joshi et
al., 1990). Expression of phosphorylated H2AX
histone, a DNA double-strand break marker, in
intact mouse spermatocytes also indicates sponta-
neous DNA breakage in these cells (Forand et al.,
2004). In rat spermatids the number of nicks in
DNA increases in early stages of development,
reaching a maximum in the middle stages and
decreasing later (Iseki, 1986). The recent study
performed on murine and human spermatids indi-
cates that DNA breakage follows replacement of
histones by protamines - the breaks are necessary

to remove superhelicity of the DNA molecule
(Marcon, Boissonneault, 2004).These are predom-
inantly double-strand DNA breaks generated by
topoisomerase II, the process is dependent on his-
tone H4 hyperacetylation (Laberge, Boissonneault,
2005). Andrologists manifest great interest in the
studies of DNA strand breaks in the spermatozoa,
as increased number of persisting DNA strand
breaks is coupled to male infertility. Probably DNA
strand breaks found in mature sperm are due to
incomplete repair of the functional DNA strand
breaks in spermatids. Persistence of theses breaks
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Figure 1. Evidence for DNA fragmentation in Xenopus erythro-
cytes. a – cells were embedded in agarose blocks and subject-
ed to alkaline conventional electrophoresis (0.8% agarose; 30
mM NaOH, 1 mM EDTA, 30 V, overnight). 1, 2 – DNA of two ani-
mals; b - cells were embedded in agarose blocks and subjected
to low-voltage electrophoresis in neutral conditions (0.75%
agarose in TBE; 0.6 V/cm, 72 h at room temperature; 2, 3, 4 –
DNA of three animals). c, d – pulse-field electrophoresis per-
formed on a contour-clamped homogenous electric field (CHEF)
device system in different conditions. c - 220 V, 0.8% agarose,
120° reorientation angle, 60 s switch time for 15 h followed by
90 s switch time for 8 h. d – 50 h with 600s switch time fol-
lowed by 70 h with 600-2700 s switch time. 1,2 - samples from
two animals. Positions of the size markers (Kbp) are given on
the left. Details in (Sjakste, 1997). 



causes the so-called abortive apoptosis, as some
data indicate similar mechanisms of DNA breakage
in sperm to apoptotic DNA breakage (Muratori et
al., 2006).

Embryo development
In sea urchin embryo significant nick number is

detected on morula stage, the breaks are localized
predominantly in the histone gene chromatin
domains (Wortzman, Baker, 1989). In a thorough
study by Zaraiskii and colleagues (1989) the spa-
tial and temporal patterns and quantities of nicks in
nuclear DNA during gastrulation and neurulation
were studied using nick-translation in sections of
Xenopus laevis embryos. Specific changes in the
number of nicks in different mesoderm and ecto-
derm regions were detected during embryogenesis.
A dorso-ventral gradient in labelling of nuclei was
observed in the mesoderm and inner ectoderm layer
of early and middle gastrula. The gradient was
inverted during transition from gastrula to neurula.
At the same time dorso-ventral (in mesoderm) and
ventro-dorsal (in outer ectoderm layer) gradients of
nuclear labelling were increased. The intensity of
nuclear labelling in all parts of the embryo as a
whole was remarkably higher during neurulation as
compared with gastrulation. A dorso-ventral gradi-
ent of nuclear labelling was observed in mesoderm
and ectoderm during neurulation.

In mouse preimplantation embryos, the chromo-
some reactivity in nick translation was highest at
the blastocyst stage and varied according to cleav-
age divisions of the zygote. No gaps were observed
in postimplanation embryos (Patkin et al., 1995).

In murine teratocarcinoma cells, the F9 that are
used as a model of early development, DNA strand
breaks were observed mostly in undifferentiated
cells; the breaks were repaired after induction of
differentiation with retinoic acid (Kisliakova et al.,
2000). Induction of differentiation of embryo stem
cells and culture of murine teratocarcinoma was
followed by numerous DNA incisions during the 2nd
to 4th mitosis after induction; the break number
decreased and reached the initial level on following
stages of differentiation (Vatolin et al., 1997).

Nerve cells
Number of DNA strand breaks in neurons is

lower compared to other cells; the number of
breaks does not change during the rat embryo
development and during post-natal development of

the animal (Mullaart et al., 1990). However, com-
parison of different brain structures has revealed
an increased number of breaks in the cerebellum
Purkinje cells compared to pyramidal cells of large
hemispheres (Iseki, 1986). An analogous study by
Patkin et al. (2001) revealed subpopulations of
neurons and glial cells differing in the number of
DNA strand breaks. Huge DNA fragmentation was
revealed in neurons of mice with an inborn defect of
double-strand break repair. It is supposed that that
in normal animals these breaks are induced and
immediately repaired by way of intensive recombi-
nation in neurons (Gilmore et al., 2000). The idea
that probable somatic rearrangements in nerve
cells undergoing differentiation which contribute to
the generation of neuronal heterogeneity was for-
mulated by Chun and Schatz (1999). It was based
on the discovery of the recombination activating
gene-1 (RAG-1) transcript in the murine central
nervous system (Chun et al., 1991). This idea
received indirect support from experiments on dele-
tion of genes participating in DNA recombination.
Deletion of DNA ligase IV (Barnes et al., 1998;
Gao et al., 1998), its dimerization partner XRCC4
(Gao et al., 1998), and Ku proteins (Gu et al.,
2000) resulted in the early neuronal death and con-
sequent loss of embryos.Thus, induction and repair
of double strand DNA breaks appear to be neces-
sary steps in neuron differentiation. p53 deficiency
and ataxia-telangiectasia-mutated (ATM) gene
deficiency rescue the embryonic lethality and neu-
ronal apoptosis, (Frank et al., 2000; Sekiguchi et
al., 2001), these features cause the difference
between recombination mechanisms in lympho-
cytes, that are independent of p53 and ATM and
probable recombination in neurons.

Muscle cells
Differentiation of the primary chicken myoblasts

is followed by induction of 100 to 300 single-strand
DNA strand breaks per cell (Farzaneh et al.,
1985). The breaks are formed in young myotubes,
later these are repaired (Dawson, Lough, 1988).
Muscle cell nuclei contain the highest number of
DNA strand breaks of all mammalian tissues (Iseki
et al., 1986). Differentiation of muscle cells is fol-
lowed by increase of the Ca2+/Mg2+ - dependent
endonuclease activity (Shiokawa et al., 2002).
Exogenous DNA breakage delays differentiation of
the C2C12 myoblast culture (Puri et al., 2002); on
the contrary, in Drosophila myoblasts DNA break-
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age triggers the differentiation process (Hossain et
al., 2005).

Fibroblasts
Differentiation of transformed Djungarian ham-

ster fibroblasts in confluent culture is followed by
accumulation of single- and double strand breaks
that are localized presumably in a fraction of tran-
scriptionally active chromatin (Arshavskaya et al.,
1989; Sjakste, Budylin, 1990).

Erythroid cells
The first two reports about the involvement of the

DNA strand breaks in the erythrodifferentiation
process appeared in simultaneously published arti-
cles about the accumulation of DNA strand breaks
in the cells of Friend erythroleukemia induced to
differentiate with dimethylsulfoxide (DMSO)
(Terada et al., 1978; Scher, Friend , 1978). It was
also reported that exogenous breaks induced by
UV-light or bleomycin also induce transition of cells
to first stages of erythrodifferentiation. Other
authors disagreed with these conclusions and
claimed it was erroneous, the data were interpreted
as follows: DMSO triggered a temporal arrest of
the cells in the G1-phase of the cell cycle with sub-
sequent synchronous transition to S-phase. An
increased number of replicative forks simulated
fragmentation of DNA (Pulito et al., 1983). Some
research teams did not detect any increase in DNA
fragmentation in this model of differentiation
(Sugiura et al., 1984 Reboulleau et al., 1983). At
the same time an increased number of double-
strand breaks was found in differentiating K562
erythroleukemia cells; these retained a high poten-
tial for DNA repair (Tabocchini et al., 2000).

Lympohocytes
Quiescent lymphocytes contain more DNA strand

breaks when compared to other human cells
(Johnstone, Williams, 1982). Blast-transformation
of lymphocytes was followed by an active DNA
break repair; the process of blast-transformation
was blocked by poly-ADP-ribosyltransferase
inhibitors. In an analogous study conducted on
murine lymphocytes the number of repaired DNA
strand breaks was evaluated quantitatively, it was
concluded that 2500 DNA strand breaks were
repaired in every cell undergoing blast-transforma-
tion (Kaplan et al., 1987; Johnstone, 1984).
Stimulation of mouse spleen cells with Concavalin

A triggers repair of 3200 DNA strand breaks per
cell. Repair was observed both in T- and B-spleno-
cytes, thymocytes contained a lesser number of
DNA strand breaks that were not repaired during
the blast-transformation. Repair was preceded by
an increase of the intracellular NAD+ concentration
and increase of enzymatic activity of poly-ADP-
ribosyltransferase. However, induction of the poly-
ADP-ribose synthesis by injection of NAD+ in per-
mebialized cells did not cause blast-transformation.
It was concluded that DNA repair is necessary, but
insufficient for the blast-transformation (Greer,
Kaplan, 1983; 1984; 1986). DNA repair in blast-
transformed splenocytes is triggered by an increase
in the intracellular Na+ concentration (Prasad et
al., 1987). It was also shown that the DNA of qui-
escent lymphocytes compared to the DNA of blast-
transformed cells contains a larger fraction of 50
Kbp DNA revealed by pulse-field electrophoresis,
this indicates an increased number of double-strand
breaks in quiescent cells (Szabo, Bacso, 1996).
Repair of DNA strand breaks was observed also
during stimulation of lympholeucemic cells. The
high initial level of DNA strand breaks in these cells
was attributed to low activity of DNA ligase (Feon
et al., 1988: Rusquet et al., 1988). It should be
mentioned that some teams could not reproduce the
above data (Boerrigter et al., 1989; Jostes et al.,
1989). The cause of the discrepancy was scrupu-
lously studied by E. Moskaleva (Moskaleva, 1989;
1990; Moskaleva et al., 1989), who revealed a
more complicated course of events. It turned out
that native cells circulating in blood do not contain
many DNA strand breaks, the breaks accumulate
during cultivation of the cells in vitro, however this
team confirmed important DNA repair during some
stages of the lymphocyte stimulation. Other authors
claim that lymphocytes still contain more DNA
strand breaks as compared to monocytes (Holz et
al., 1995). Theoretically, DNA breakage is neces-
sary for the process of diversification of
immunoglobulin genes. According to the modern
point of view (Maizels, 2005) this process starts
with expression of the activation-induced deami-
nase (AID). The enzyme deaminates the cytosine
residues in specific G-rich sites of immunoglobulin
genes (S-sites) that form single-strand hairpins
during transcription. Deaminated bases are
removed by DNA repair enzymes; the single-strand
breaks arising due to removal of these bases facili-
tate the following recombination. It is considered
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that non-immunoglobulin genes are protected
against deamination by AID as these do not contain
S-sites, although the possibility of deamination by
other genes cannot be completely excluded. For
example, there are indications of susceptibility of c-
myc gene to AID action (Maizels, 2005). If it is the
case that deaminase indeed affects the whole lym-
phocyte genome, the accumulation of DNA strand
breaks described above could be explained by
incomplete repair of deaminated sites, moreover
when alkaline denaturation of DNA is used in pro-
tocols of DNA break detection, the deaminated
alkali-labile sites can be taken for DNA strand
breaks.The question merits a thorough study.

Myelocytes and other white blood cells 
Stimulation of the bone marrow with granulo-

cyte-macrophage stimulating activity is followed by
formation and repair of DNA strand breaks
(Francis et al., 1984). A detailed study of the phe-
nomenon showed that inducers of monocyte differ-
entiation trigger repair of pre-existing DNA strand
breaks, but inducers of granulocyte differentiation
trigger both formation and repair of DNA strand
breaks (Khan, Francis, 1987). Induction of differ-
entiation of promyelocytic HL-60 cells is also fol-
lowed by induction and repair of DNA strand
breaks (Farzaneh et al., 1987a, b). The loss of
amplified c-myc sequences in differentiating HL-60
cells (Shima et al., 1989) could be enabled by the
above DNA strand breaks. Specific protein MGI-2
with nuclease activity is involved in granulocyte and
macrophage differentiation (Weisinger et al.,
1986). Moreover differentiation of HL-60 cells is
followed by increased expression of DNA-depend-
ent proteinkinase involved in the repair of double-
strand DNA strand breaks (Sallmyr et al., 2004);
expression of DNase II that produces above breaks
is increased at the same time (Chou et al., 2003).

Epidermal cells
DNA strand breaks were detected in the cells of

intestinal epithelium, keratinizing epithelium and
epithelium of salivary ducts (Iseki, 1986), terminal-
ly differentiated vaginal epithelium (Modak,
Traurig, 1972) and during differentiation of ker-
atynocytes in culture (Hartley et al., 1985). Kidney
and epididymys epithelium cell DNA contains a high
level of DNA strand breaks (Fairbairn et al.,
1994). Cells of human lower lip salivary gland duc-
tal epithelium contain numerous gaps revealed by

filling-in by Klenow fragment, these cells also con-
stitutively express Ku protein, this fact indicates
intensive double-strand DNA break repair in these
cells (Larsson et al., 2001).

Plant tissues
Accumulation of double-strand DNA breaks was

observed in developing barley shoots and during
senescence of the leaves of barley and wheat plants
(Chen, Srivastava, 1986; Sjakste et al., 1990;
1993). Breakage of DNA in flower buds becomes
more pronounced during breaking of dormancy and
development of apple-tree buds (Li et al., 1989).
Mutation of TEB gene causing constitutive expres-
sion of genes involved in double-strand break repair
is followed by numerous defects of Arabidopsis
development. The amount of homologous recombi-
nation is decreased in these plants.These facts indi-
cate the necessity for double-strand break induction
in normal higher plant development (Inagaki et al.,
2006).

Possible mechanisms of DNA break formation in
differentiating cells
Recombination and enucleation

The data presented above provide evidence for an
association between differentiation and accumula-
tion of DNA strand breaks. It is unclear however,
how these breaks might be involved in the differen-
tiation process.The generally accepted view claims
that diminution of DNA and DNA recombination
(the former is not possible without induction of
DNA strand breaks and their repair) are minor
mechanisms of gene activity regulation characteris-
tic of very specialized cells and peculiar organisms.
The DNA loss happens during enucleation of matu-
rating mammal erythrocytes and lens cell differen-
tiation, in the course of development of some pro-
tozoans, worms and crustaceans. Recombination is
observed during the life cycle of yeast, antigen vari-
ation in trypanosomes and antibody production in
higher organisms (Latchmann, 1995; De Maria et
al., 2004; Lieber, 1998). Actually, the process of
induction of DNA double-strand breaks and their
repair during meiotic recombination in yeast is
known in detail and the enzymes that induce DNA
strand breaks are also well-characterized (Sollier
et al., 2004). DNA sequences where these incisions
are made (Klein et al., 2005) have been character-
ized. Among the above examples recombination
could explain the sometimes observed DNA repair
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in blast transformed lymphocytes; however it seems
doubtful that 2500 breaks per cell (Kaplan et al.,
1987) are needed to perform recombination in a
single gene. It was speculated that numerous breaks
indicated involvement of recombination in the dif-
ferentiation process more frequent than generally
assumed (Williams, Johnstone, 1983); however this
hypothesis has been not proved in the succeeding
twenty years. Recombination might be quite inten-
sive also during neuron differentiation (Chun and
Schatz, 1999; Gilmore et al., 2000), but direct evi-
dence for this has not been published yet.

Excision of modified bases
The above described deamination of cytosine in

lymphocytes (Maizels, 2005) could explain the
effect if involvement of vast genomic areas in the
process is proved. It was also hypothesized that
breaks in differentiated cells accumulate in the
sites with demethylated bases (Patkin, 2002).
Recently formation of DNA strand breaks in the
promoter of the tyrosine amino transferase (Tat)
gene in cultured hepatocytes was observed follow-
ing the hormone-induced demethylation of cytosine
residues in this gene (Kress et al., 2006).
Demethylation of the numerous genes necessary for
execution of the differentiation program, during
transcription outburst could lead to massive accu-
mulation of DNA strand breaks; however this
assumption should be tested experimentally.
Mechanisms of DNA strand break formation are
schematically presented in Figure 2.

DNA repair and differentiation
Decreased capacity of differentiated cells for

DNA repair could explain accumulation of DNA
strand breaks in such cells. In this case the cells
would not be able to repair spontaneous DNA
strand breaks (Vilenchik, Knudson, 2000; 2003). It
is considered that insufficient DNA repair causes
accumulation of DNA strand breaks in cells of
aging organisms and senescent cell cultures (Bohr,
2002). Summarizing the results of numerous stud-
ies on repair intensity in differentiated cells per-
formed in P. Hanawalt’s and other laboratories,
Nouspikel and Hanawalt (2002) come to the con-
clusion that DNA repair capacity is decreased in
general during differentiation of neurons, muscle
cells, adipocytes, white blood cells, keratonocytes,
melanocytes, intestinal epithelium cells, hepato-
cytes , spermatids and oocytes. This conclusion is

valid for nucleotide excision repair and repair of
single-strand DNA breaks. In their most recent
reports these authors provide evidence for the exis-
tence of a specific differentiation-associated type of
repair active in terminally differentiated cells. This
mechanism enables repair of DNA lesions inside
chromatin domain of the genes that are expressed
in a given type of differentiated cells. DNA lesions
accumulate in the resting dormant part of the
genome (Hsu et al., 2007; Nouspikel et al., 2006).
Data supporting the idea of DNA repair decay in
differentiated cells were obtained also on granulo-
cytes differentiated from HL-60 cells. It was shown
that the Ku protein, necessary for repair of double-
strand breaks, is degraded by a specific protease
(Sallmyr et al., 2004). The authors explain their
finding as a step of down-regulation of DNA repair
capacity necessary for normal performance of
granulocyte functions. They speculate that a high
level of exposition of granulocytes to free radicals
inevitably causes massive DNA damage. Repair of
these lesions is not profitable from the point of view
of ATP consumption, thus DNA repair systems are
degraded in order to economize ATP. DNA remains
unrepaired as a sequence.This could be a very log-
ical explanation of the phenomenon of accumula-
tion of DNA strand breaks in differentiating HL-60
cells at least. Decreased DNA repair is observed
also in differentiated root cells in barley
(Shikazono et al., 1995). However, a decrease in
the capacity for DNA repair cannot be ruled out as
a general feature of differentiated cells. Other
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Figure 2. Schematic presentation of mechanisms of DNA strand
break formation during deamination of cytosine (A) and exci-
sion of methylated cytosine (B).



groups find that DNA of differentiated cells is more
resistant to DNA lesions produced by reactive oxy-
gen species compared to undifferentiated cells
(Covacci et al., 2001); there are also reports indi-
cating efficient DNA repair in such cells (Farzaneh
et al., 1987a). Fibrocytes derived from human
fibroblasts also maintain efficient DNA repair sys-
tems (Brammer et al., 2004).Thus, decreased DNA
repair capacity cannot explain all cases of DNA
break accumulation in differentiated cells.

Differentiation and poly(ADP)ribosylation
It was proposed that DNA strand breaks in differ-

entiating cells arise as the necessary triggering fac-
tor for poly (ADP) ribose synthesis, as the subse-
quent changes in gene expression profile are regu-
lated via poly(ADP)ribosylation of the chromatin
proteins (Shall, 1983). Moreover, it was speculated
that DNA strand breaks are induced and repaired
constantly following the principle of dynamic equi-
librium (Farzaneh et al., 1985).The importance of
poly (ADP) ribosylation of nuclear proteins in the
differentiation process is confirmed by numerous
novel investigations. For example, the poly (ADP)
ribosylation level is modified during differentiation
of numerous cell lines. In some cases inhibitors of
poly (ADP) ribosylation block differentiation
(Faraone-Mennella, 2005). Thus, the suggestion of
a fundamental role for programmed DNA damage
merits further development.The necessity for DNA
break-dependent poly (ADP) ribosylation was
demonstrated for early embryo development, during
differentiation of neurons and in differentiation
induced by retinoic acid (Bürkle, 2006). In the
process of apoptosis triggered by DNA damage,
exhaustion of the NAD+ pool for synthesis of the
ADP-ribose polymer and the subsequent failure of
cellular bioenergetics is one of the causes of cell
death (Koh et al., 2005). Interestingly, this possibil-
ity was predicted as long as 20 years ago as a con-
sequence of a shift of dynamic equilibrium to exces-
sive DNA fragmentation (Farzaneh et al., 1985).
Thus, as the similarities between apoptosis and dif-
ferentiation processes become more evident, the
question should be discussed considerably more
thoroughly than heretofore.

Interfaces between differentiation and apoptosis
The idea about a possible unfinished apoptosis

was proposed by Solov’yan and co-authors (1997)
who observed long-range DNA fragmentation in

several cell types. Recent data on the existence of
some common pathways for programmed cell death
and differentiation enable further development of
this idea.The most convincing evidence for associa-
tion of the two processes was obtained after
description of the vital functions of caspases; it
turned out that these enzymes are involved in the
processes of normal differentiation in Drosophila
(Kumar, 2004) and mammals (Launay et al.,
2005). In the latter case participation of caspases
in differentiation is not restricted to cells that
become enucleated in the course of differentiation.
Caspases participate in processes of blast-transfor-
mation of lymphocytes, differentiation of mega-
karyocytes and epithelial cells (Launay et al.,
2005). For example, caspases 6, 3, 8 and c-FLIP
are necessary for lymphocyte differentiation
(Siegel, 2006). However, enucleation and apoptotic
chromatin fragmentation are executed by different
nucleases (Nagata et al., 2005).

We have observed simultaneous differentiation
and apoptosis in the culture of AEV-transformed
chicken erythroblasts of HD3 line (Iarovaia et al.,
2001; Sjakste, Sjakste, 2004). These cells start
hemoglobin synthesis when kept at 42°C in pres-
ence of a protein kinase C inhibitor. As demonstrat-
ed in Figure 3 the uninduced culture where alphaA-
globin gene is abortively expressed in the nuclei
contains a small fraction of apoptotic cells.
Transport of alpha globin mRNA to cytoplasm and
DNA fragmentation was observed in the cells
induced to differentiate. We remind readers that
these were avian erythroblasts, in which the nucle-
us remains intact during differentiation.

Genomic sites for preferential DNA cleavage dur-
ing differentiation

The NM23 protein which is involved in regulation
of differentiation and tumor transformation binds
the c-myc gene promoter and makes a double-
strand cut inside it (Postel, 1999).The recombina-
tion hotspots probably exist constitutively as a site
of single-strand DNA that can be registered as a
break (Szekevolgyi et al., 2005). Cloning and
sequencing of genomic sites adjacent to breaks
splitting the human genome in 50 Kbp fragments in
the absence of apoptosis enable the characteriza-
tion of several predominant motifs; CCAGCCTGG
and AAAAAAAACAAAA were the most common,
and some formerly known repeats including Alu
repeats were also found in these sequences. The
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authors suggest recombinogenic functions for these
sequences (Szilagyi et al., 2003). Similar recom-
binogenic functions are attributed also to the
human 5 bp classical satellite (TTCAA)n and to
similar mouse major satellite DNA. Using an origi-
nal DNA-breakage detection – fluorescence in situ
hybridization method (DBD-FISH) it was shown
that these sequences contain numerous endogenous
alkali-labile sites or DNA strand breaks in lym-
phoid cells (Fernandez et al., 2001; Rivero et al.,
2001). The grasshopper Pyrgomorpha conica
telomeric repeat (TTAGG)n in sperm cells also con-
tains a number of endogenous DNA lesions (Lopez-
Fernandez et al., 2006). The Chinese Hamster
Interstitial Telomeric Repeat Sequence also con-

tains numerous endogenous single-stranded sites
and DNA lesions in different strains of CHO
(Chinese Hamster Ovary) cells (Rivero et al.,
2004).

Forum DNA is excised in the GGCTGGGCTGC-
CAA site and the (TCAG)11 microsatellite is often
found inside it.The authors indicate that these sites
are situated not in the nuclear matrix attachment
points but rather in special sites of heterochromatin
intercalation (Tchurikov et al., 1998; 2004).
Evaluation of DNA breakage site-specificity in the
Xenopus erythrocytes showed that the fast DNA
fraction contained less rDNA and satellite 1
sequence compared to high molecular fraction. At
the same time it was calculated that rDNA contains
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Figure 3. Simultaneous differentiation and apoptosis. In situ
hybridization with alpha globin probe (a, b) and gel elec-
trophoresis of DNA preliminary fractionated by means of nucle-
oprotein-celite chromatography. (c, d) of HD 3 cells. a, c – unin-
duced culture; b, d - culture induced to differentiate. DNA0 –
fraction of chromatin unbound to the nuclear matrix, DNA I –
fraction of chromatin loosely bound to the nuclear matrix, DNA
II - fraction of chromatin tightly bound to the nuclear matrix.
Lane 1 – breakthrough fraction; lanes 2,3 – fractions of NaCl
gradient; 4,5 – LiCl-urea gradient; 6,7 – temperature gradient
(see explanations below). Cell culture conditions and in situ
hybridization protocol were as described (Iarovaia et al., 2001).
Principle and interpretation of nucleoprotein celite chromatog-
raphy results are illustrated on Figure 5. Briefly the cell lysate
was directly applied on a precooled (0°C) water-coated column
of Celite R-630 (Fluka). Column was rinsed with 50 mL of 5 mM
MgCl2, 10 mM Tris HCl, pH 7.4 (breakthrough fraction). 80 mL
of NaCl (0 - 2M) in linearly increasing concentration was
pumped through the column; eluate was collected in two frac-
tions (DNA 0). Then a gradient of LiCl - urea (0 - 4M; 8M) was
applied in the same manner (DNA I). Finally the column was
gradually heated from 0°C to 100°C under constant flow of 4
MLiCl, 8M urea solution (DNA II). Eluate obtained after each
gradient was divided in two fractions: by volume in NaCl and
LiCl-urea fradients, below 70°C and between 70°C and 100°C
for the temperature gradient. Nucleic acids from the fractions
were concentrated by absorption on hydroxyapatite and elution
with 1 mL of 0.24 M phosphate buffer. DNA was purified by
Wizard DNA Clean-Up System kit (Promega) and subjected to
electrophoresis in 1% agarose in 1TBE buffer.

Figure 4. Individual peculiarities of long-range organization and
localization of single-strand breaks in satellite 1 sequences of
Xenopus erythrocytes. Upper and lower panels represent two
animals. 1st direction - pulse-field electrophoresis of erythrocyte
DNA digested with BamH1, 2nd direction – alkaline electrophore-
sis. Conditions of pulse-field electrophoresis and alkaline elec-
trophoresis were as described for Figure 1c. Hybridziation with
probe for satellite 1. Positions of the size markers (Kbp) are
given on the left and between the panels. Details in (Sjakste,
1997).



more DNA strand breaks (2 breaks per repeat)
than satellite 1 (Sjakste, 1997).The distribution of
DNA strand breaks inside satellite 1 was evaluated
by means of two-dimensional pulse-field/alkaline
electrophoresis. Results are presented in Figure 4.
DNAs of two clawed toads were digested in agarose
blocks with BamH1 restrictase and separated in
the first direction by pulse-field electrophoresis.The
gel slices were cut out and sealed in alkaline
agarose gel. Electrophoresis in the 2nd direction was
performed in conventional conditions for alkaline
electrophoresis. DNA was blotted onto a membrane
and hybridized with molecular probe for satellite 1.
The first direction revealed individual differences in
satellite 1 long-range organization (Pasero et al.,
1993). The second direction revealed discrete sin-
gle-strand fragments about 20 Kb in size in the
first animal (upper panel). This fraction was not
observed in the second animal (lower panel), how-
ever a well-resolved fraction of about 4 Kb in size
is clearly visible. Thus, the single-strand DNA
strand breaks are specifically distributed in satellite
1 sequences of different individuals (Sjakste,
1997).

Finally, we would like to mention data obtained by
means of a nucleoprotein celite chromatography

method. The method is described in the legend to
Figure 3. Its principle is illustrated in Figure 5. In
numerous studies performed on animals
(Lichtenstein et al., 1982; 1995; Sjakste et al.,
1990) and plant cells (Sjakste et al., 1993) we
observed changes in chromatograms indicating
induction of DNA strand breaks in quiescent or dif-
ferentiating cells in close vicinity to the replication
complex in matrix-attached DNA. Taken together
the data about localization of differentiation-
dependent DNA strand breaks indicate their selec-
tive accumulation in reiterated sequences and in
sites of attachment to the nuclear matrix.

Conclusions
In this review we have made an attempt to sum-

marize the available data on DNA strand breaks
that accompany cell differentiation. Bad repro-
ducibility of the results in different teams is the
most disappointing discovery. Spermatide develop-
ment is the only process in which accumulation of
DNA strand breaks at a certain stage is a general-
ly accepted fact. Data supporting formerly favorite
models - blast-transformation of lymphocytes and
myotube formation are rather contradictory. It
seems that the changing fashion in detection meth-
ods for DNA strand breaks is one of the main caus-
es of these discrepancies.The reviewed publications
were issued during the past thirty years; several dif-
ferent methodical approaches were popular during
different phases of this period. Principles of differ-
ent methodical approaches of DNA break detection
are summarized in Figure 6 and Figure 7.The old-
est publications present mostly ultracentrifugation
data, the eighties was the period of alkaline elution,
alkaline unwinding and nick-translation, comet
assay, while TUNEL-assay and pulse-field elec-
trophoresis are the most popular since the mid-
eighties till now. Should TUNEL-assay reproduce
data obtained by alkaline unwinding? Not of
course, as the former cannot detect DNA strand
breaks without 3’-OH end, but the latter does not
discriminate alkali-labile sites and DNA strand
breaks. Going further we can mention that results
of alkaline elution are influenced by the level of
DNA superhelicity, features of the DNA-polymerase
used determine to a large extent the results of the
nick-translation, etc.The problem could be solved in
a framework of a complex investigation in which
several research teams follow the formation and
repair of DNA strand breaks in several well-defined
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Figure 5. Principle and interpretation of results of the nucleo-
protein celite chromatography method. 1. separation of fac-
tions; 2. possible localizations of DNA breaks; 3. corresponding
changes in chromatograms. Single-strand breaks in distal parts
of chromatin loop cause decrease of the DNA elution tempera-
ture. Single strand breaks in the vicinity of the replication com-
plex induce transition DNAII – DNA I. Double strand breaks
release the DNA0 fraction.
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models of differentiation (lymphocytes, myocytes,
HL-60 cells) using set methods based on different
principles. If break formation is confirmed, the
structure of the breaks should be determined (dou-
ble or single-strand breaks, breaks with free 3’-OH
or 5’-OH ends, etc.) as this has never previously
been performed.

Several hypotheses can be proposed to explain
the possible functional role of DNA strand breaks
in differentiation. The hypothesis proposed by
Patkin (2002) about formation of the breaks in
areas of base demethylation appears to be quite
probable. The process can be imagined as follows:
stimulus for differentiation triggers activation of
formerly dormant genes; demethylation is followed
by DNA break formation and repair. The process
was well-illustrated on an example of the formation
of DNA strand breaks in the promoter of the tyro-
sine amino transferase (Tat) gene in cultured hepa-
tocytes following the hormone-induced demethyla-

tion of cytosine residues in this gene (Kress et al.,
2006).

It seems that gene recombination is more com-
mon in differentiation, including the neuron differ-
entiation, than previously accepted (Chun, Schatz,
1999; Gilmore, 2000).Taking into account data on
the recombination in lymphocytes (Maizels, 2005)
the process can be imagined as follows: stimulus for
differentiation is followed by deaminase expression,
cytosine is deaminated in specific gene sites, exci-
sion of deaminated cytosine creates single-strand
breaks transformed into double-strand breaks, and
the latter enable the recombination process. Data
on accumulation of DNA-breaks in recombinogenic
sequences in (Szilagyi et al., 2003; Fernandez et
al., 2001; Rivero et al., 2001; Lopez-Fernandez et
al., 2006; Rivero et al., 2004) confirm the possibil-
ity for frequent recombinations in different cells. If
the recombination process is really wide-spread we
should assume that different differentiated cells in
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Figure 6. Methods of DNA break detection based on different
features of single- and double-strand DNA. 1. elucidation of sin-
gle-strand sites with S1-nuclease; 2. nick-translation; 3. alka-
line unwinding on hydroxyapatite; 4. immune fluorescence
method; 5. fluorometric analysis; 6. TUNEL assay.

Figure 7. Methods of DNA break detection based on peculiari-
ties of DNA fragments of different length and superhelicity
changes. 1. comet assay; 2. sedimentation in sucrose gradient;
3. alkaline elution; 4. sedimentation of nucleoids.
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an organism should possess different genomes. We
remind the reader that there is, in fact, nothing new
in this postulate; it is well-known that cells differ in
ploidy (haploid gametes, polyploidy hepatocytes).
During the initial stages of enucleation the differen-
tiating red blood cells or lens cells retain just a part
of the genome. Lymphocytes differ among them-
selves and other cells in the structure of
immunoglobulin genes. If the idea about intensive
recombination in neurons is shown to be true (Chun
and Schatz, 1999; Gilmore, 2000), each neuron
should possess a unique genome! Perhaps the time
has come to start projects in cell genomics?
Modern methods enable comparison of the struc-
ture of a set of genes in individual cells of a given
organism.

Finally, we can propose a hypothesis that assumes
a more active role of DNA strand breaks in the dif-
ferentiation process. It is based on the data on asso-
ciations between differentiation and apoptosis
processes, site-specificity of DNA strand breaks
and activation of poly(ADP)ribose polymerase in
differentiation.The cascade of events can be imag-
ined as follows: stimulus for differentiation triggers
activation of vital caspases, these activate a specif-

ic nuclease, the nuclease induces DNA strand
breaks in specific sequences, poly(ADP)ribosyl
transferase is activated in response, poly (ADP)
ribosylation leads to expression of necessary genes
(Figure 8). It should be mentioned that DNA strand
breaks could cause changes in chromatin configura-
tion favorable for expression of given genes.
Although this hypothesis is still speculative, it does
not contradict any well-established facts. In any
case, an answer to the question about a functional
role of DNA strand breaks in differentiation might
be achieved if it attracts the interest of a broader
research community.
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