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Assessing the interactions between nanoparticles and biological barriers in vitro: 
A new challenge for microscopy techniques in nanomedicine
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Nanoconstructs intended to be used as biomedical tool must be assessed for their capability to cross biological
barriers. However, studying in vivo the permeability of biological barriers to nanoparticles is quite difficult due
to the many structural and functional factors involved. Therefore, the in vitro modeling of biological barriers -
2D cell monocultures, 2D/3D cell co-cultures, microfluidic devices- is gaining more and more relevance in
nanomedical research. Microscopy techniques play a crucial role in these studies, as they allow both visualizing
nanoparticles inside the biological barrier and evaluating their impact on the barrier components. This paper
provides an overview of the various microscopical approaches used to investigate nanoparticle translocation
through in vitro biological barrier models. The high number of scientific articles reported highlights the great
contribution of the morphological and histochemical approach to the knowledge of the dynamic interactions
between nanoconstructs and the living environment. 
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Introduction
One of the main issues in the development of nanoconstructs

intended for biomedical purposes is the assessment of their capa-
bility to cross biological barriers. In fact, to reach their target and
play therapeutic or diagnostic functions, nanoparticles (NPs) must
face various barriers, not only the plasmalemma that surrounds any
cells but first  the more complex histological structures , which
regulate the molecular traffic in specific organs or anatomical
regions of the body: the skin, the endothelial, intestinal, lung or
placental barriers, the blood brain barrier (BBB), or the tumor
microenvironment barrier.

Studying the permeability of biological barriers to NPs is a
quite difficult task to perform in vivo, due to the numerous struc-
tural and functional factors influencing the process. For this rea-
son, in vitro modeling of biological barriers -from the simple 2D
cell monocultures to 2D and 3D cell co-cultures, to the high tech-
nologic microfluidic devices- is becoming more and more popular
in nanomedical research (recent review in1). By using these in vitro
models, it is possible to track the NPs during their passage across
the barrier, to elucidate the mechanisms involved in their dynamic
interactions, and to identify the NPs’ physico-chemical features
necessary to guarantee their translocation. 

Microscopy techniques are crucial in these studies, as they
allow both visualizing the NPs through the barrier and evaluating
their impact on the barrier components. Depending on the
microscopy technique used (bright-field or phase contrast
microscopy, fluorescence microscopy or transmission electron
microscopy), NPs can be made detectable by either linking/loading
appropriate dyes during the synthetic process or by labelling with
specific histochemical staining after their administration.2-16
Moreover, some nanoconstructs such as quantum dots or nanodia-
monds, are characterized by an intrinsic photoluminescence that
can be easily detected at fluorescence microscopy in the absence of
an additional staining.17,18

This paper aims at providing an overview of the various micro-
scopical approaches used to investigate in vitro the translocation of
NPs through biological barriers, thus highlighting the great contri-
bution of microscopy techniques to the knowledge of the interac-
tions between the living environment and the nanoconstructs.

Tracking nanoparticles across biological barriers
Fluorescence microscopy is the most widely used technique to

analyse NPs translocation through biological barrier models.
Among the different fluorescent-related microscopy techniques,
laser scanning confocal microscopy (LSCM) is extensively applied
because, compared to the conventional epifluorescence
microscopy, it provides an increase in the effective signal-to-noise
ratio and allows visualizing the 3D distribution of NPs by the col-
lection of serial optical sections from the entire sample thickness.19 

Numerous works have exploited the potential of LSCM to
detect the uptake, diffusion and localization of several kind of NPs
through different biological barriers (blood vessel, skin, intestine,
mucus, tumor) simulated in vitro under static or dynamic condi-
tions.20-33 George and collaborators investigated the translocation
of silica NPs in a transwell model of the human bronchial epithelial
barrier, obtaining also quantitative information on the NP distribu-
tion in the apical and basolateral compartments.34 Similarly,
Schimpel and colleagues35 performed a z-stack scan to demon-
strate a highest particle uptake in the double culture model of
Caco-2 cells (immortalized cell line of human colorectal adenocar-
cinoma) and Microfold (M) cells, compared to Caco-2 monolayer

and Caco-2/HT29-MTX triple culture as in vitro models of the
intestinal barrier. 

LSCM was also used to visualize the adhesion, accumulation
and dynamic relocation of NPs in function of their geometry, size
and cell type in in vitro 3D models of dermis or cerebral endothe-
lium.36,37 Through LSCM it was possible to perform a semi-quan-
titative analysis of the kinetics mechanisms of penetration through
tumor barriers and accumulation of fluorescent NPs, by directly
scanning 3D models or measuring the fluorescence intensity of
cryosections taken either from a mid-penetration depth or from the
entire thickness of the 3D matrix.38-42 

Moreover, LSCM offers the possibility of optically recon-
structing the barrier in 3D with extremely low out-of-focus noise
and improved spatial resolution. In this context, many researchers
have been using the 3D modelling, obtained from z-stacks acquisi-
tion, to visualize the spatial distribution of NPs. Moreira and col-
laborators investigated in 2D and 3D tumor models the distribution
and effects of a novel pH- and thermo-responsive carrier composed
of doxorubicin-loaded gold-core silica shell nanorods and salicylic
acid loaded poly(lactic-co-glycolic acid)-based microparticles,43
while Hu and collaborators44 evaluated the penetration capability
of NPs into an artificial skin model  generated by the 3D bioprint-
ing technology. Papademetriou and colleagues45 used LSCM to
obtain 3D images for evaluating the internalization of Angiopep-2-
coupled (Ang2)-liposomes through the brain endothelial cells
using a microfluidic model of the BBB. Similarly, a 3D intensity
map of a human BBB microvasculature and a tumor-on-a-chip
model was obtained to quantify the gradient formation and
space/time-dependent distribution of NPs.46,47

Besides LSCM, also the simpler epifluorescence microscopy
proved to be a suitable technique to visualize the translocation of
fluorescent NPs into different in vitro barrier models.48-53 For
example, Jia and collaborators54 obtained information about the
mobility of NPs in the mucus barrier. In detail, fluorescent
polystyrene NPs were injected at a constant flow speed in the
“lumen channel” of a mucus-on-chip device, and their transport
within the mucus from the mucus-liquid interface was visualized
over time using conventional fluorescence microscopy. A time-
lapse configuration was introduced in the microscopy system to
track fluorescent NPs as they move through simulated biological
barriers such as microfluidic devices of the endothelial barrier or
3D human lung-on-a-chip models.55-59 As demonstrated by Kiew
and collaborators,56 conventional fluorescence microscopy also
allows semi-quantitative evaluation of NPs permeability in an in
vitro biomimetic microfluidic model of blood vessel.

Other light microscopy techniques have been applied for the
dynamic observation of NPs through biological barriers or to deter-
mine the efficiency of NPs as suitable shuttles for pharmaceutical
applications. For instance, Brancato and collaborators60 used
bright-field microscopy to investigate the efficacy of polymeric
NPs in reducing the diameter of 3D tumor tissue models. Optical
microscopy was also used by Albanese and colleagues39 to confirm
the presence of polyethylene glycol NPs inside tumor-like
spheroids in a microfluidic system, by measuring the intensity of
silver staining in each spheroid section. Live-cell imaging videos
acquired through phase contrast microscopy allowed monitoring
the passage of silica NPs across a microfluidic in vitro model of
endothelium.61 The relevance of the light microscopy techniques
for studying the dynamic interaction of NPs is confirmed in a study
by Hudecz and collaborators,62 who obtained high-resolution
imaging of the NP interactions with endothelial cells and the cap-
ture of rare NP translocation events in an in vitro BBB model using
a specially designed bioreactor with ultrathin silicon membranes.

Despite the numerous advantages of light microscopy to track
NPs in 2D and 3D biological barrier models, a limitation is repre-
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sented by the achievable spatial resolution. In this regard, transmis-
sion electron microscopy (TEM) proved to be especially adequate
to study the penetration and distribution of NPs at the sub-cellular
level in tumor or atherosclerotic vessel or in epithelial airway mod-
els.39,50,51,58,63 Stereological analysis of TEM micrographs allowed
the evaluation of the number of intracellular particles in a human
epithelial airway model,64 while electron spectroscopic imaging was
used by Raemy and collaborators65 to localize at TEM cerium oxide
NPs in the intercellular milieu of an in vitro lung barrier. 

Evaluating the effects of nanoparticles on biologi-
cal barriers

Microscopy is also applied to determine the effects of NPs on
2D and 3D in vitro biological barriers in order to evaluate the effi-
cacy and potential risks associated with the administration of
nanoconstructs. To this aim, fluorescence microscopy is again the
most widely used technique. In several studies, the cell viability
was investigated by various assays based on fluorescent dyes after
NPs exposure in tumor and dermal barrier models.44,66,67 The
impact on cell viability of titanium dioxide NPs in an in vitro gut
epithelial model was evaluated by staining with a mixture of acri-
dine orange and ethidium bromide.63 Moreover, the changes in cell
morphology and activities were measured through fluorescence
microscopy to evaluate the effect of ZnS NPs on fibroblasts cul-
tured in a 3D wound healing model.68 To further characterize the
effect of NPs penetration across biological barriers, immunofluo-
rescence staining of specific biomarkers was also performed. As an
example, the expression of junctional proteins was assessed to
prove the cell integrity after NPs exposure in models of BBB,70
bronchial epithelial barrier34 and skin.69 Fluorescence microscopy
was also used to evaluate the morphological changes of 3D multi-
cellular spheroids mimicking the solid tumor barrier, after admin-
istration of doxorubicin-loaded NPs.49 Similarly, Moreira and col-
laborators43 investigated the capability of gold-core silica shell
nanorods with salicylic acid loaded poly(lactic-co-glycolic acid)
based microparticles to promote tumor cells death and spheroid
disassembly; to do this, the authors monitored by light microscopy
the variation in time of the spheroids size.

The morphological integrity of tissues after NPs administration
was evaluated using histological staining techniques. For example,
the classic hematoxylin and eosin staining was used to visualize
the skin structure,53,69,71,72 the integrity of the BBB,48 and the effect
of photodynamic therapy in an in vitro 3D microfluidic breast can-
cer tissue model.66 The effect of retinol-lipid NPs on collagen in an
in vitro model of human skin was assessed by the Masson’s
trichrome staining.73

Electron microscopy is also gaining relevance in determining
the effectiveness of NPs in biological barrier models. In fact, Wang
and colleagues74 used scanning electron microscopy images to
demonstrate the antibacterial efficacy of Carbopol nanogel parti-
cles in reducing the biofilm attached on a 3D co-culture model of
biofilm/human keratinocyte clusteroid.

Concluding remarks
Nanomedicine is a rapidly developing research area and repre-

sents a stimulating challenge for many scientific and technological
disciplines. 

The novel nanoconstructs must be characterized for their
chemical nature, electric charge, size and shape, then carefully
tested for biocompatibility: in this context, microscopy not only

plays an irreplaceable role for the structural characterization of
NPs, but is also crucial to elucidate their spatial interactions and
functional effects on living organisms.

To reach their organ, tissue or cell targets, NPs must cross dif-
ferent and complex biological barriers, and light and electron
microscopy techniques proved to be especially appropriate to visu-
alize their dynamic behavior. The modelling of in vitro systems
that mimic the physiological complexity of living structures is
becoming increasingly frequent in science, to ensure controlled
experimental conditions while meeting the ethic and economic
issues aimed at reducing the number of the animals to be used in
the research practice. The growing number of scientific papers that
deal with the application of a variety of microscopy techniques to
assess NPs’ crossing of in vitro biological barriers testifies the
importance of the morphological and histochemical approach in
this advanced research field.
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