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Developmental expression of calretinin in the mouse cochlea
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This study investigated the expression of calretinin (CR) in the mouse cochlea from embryonic day 17 (E17)
to adulthood through immunofluorescence. At E17, CR immunoreactivity was only detected in the inner hair
cells (IHCs). At E19, the IHCs and spiral ganglion neurons (SGNs) begin to express CR. At birth, CR
immunoreactivity was confined primarily to the IHCs and the majority of the SGNs, as identified by TUJ1, both
the cytoplasm and the nucleus of SGNs exhibited CR positivity. At postnatal day 2 (P2), auditory nerve fibers
reaching the IHCs were stained for CR. CR continued to be expressed in the IHCs, whereas only single row of
outer hair cells (OHCs) were positive for CR. By P5, CR expression was evident in IHCs and the three rows
of OHCs, with SGNs soma and their neurite projections also displaying CR immunoreactivity. From P8 through
adulthood, CR expression persisted in the SGNs and their afferent neurite projections to the IHCs, as well as
in IHCs and OHCs. Dual labeling of CR with afferent nerve marker neurofilament 200 (NF200) demonstrated
that NF 200-positive SGN somas were encompassed by CR-labeled plasma membrane of SGNs, and NF 200
was co-localized with CR in the afferent nerve fibers innervating the IHCs. We also described the expression
of peripherin, a marker for type II SGNs, in the mouse cochlea at various postnatal stages. Peripherin showed
a distinct spatio-temporal expression compared to CR in auditory nerve fibers. No co-expression of peripherin
and CR was detected in adult. Dynamic expression patterns of CR in the embryonic and postnatal cochlea sup-
ported its roles in cochlear development.
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Introduction
Calretinin (CR), parvalbumin, and calbindin are the three most

abundant and extensively studied calcium-binding buffer proteins
in the nervous system.1 Their widespread presence has been report-
ed in the mammalian cochlea, indicating indispensable roles in
auditory function.2,3 CR, a 29 kilodalton protein, belongs to the EF-
hand family of calcium-binding proteins and is crucial for main-
taining intracellular calcium homeostasis.4 CR is widely expressed
across normal and pathological human tissues, serving as an
immunohistochemical marker in diagnostic pathology, particularly
for human benign and malignant mesothelial cells.5,6 Calbindin-
D28K (CaBP28K) shares homology with CR, with 58% identical
residues.7 Previous studies have shown specific expression of
CaBP28K in the greater epithelial ridge of the immature mouse
cochlea,8 while the immunolocalization of CR was associated with
cochlear afferent fibers, suggesting distinct physiological func-
tions.9 CR expression was observed in various auditory neurons,
including those in the cochlear nuclei and superior olivary com-
plex located in the brainstem, where its expression at neonatal
stages was associated with early development of the auditory
brainstem.10 Increased CR immunostaining in the cochlear nuclei
and spiral ganglion neurons (SGNs) was linked to protection
against noise-induced hearing loss.11 Furthermore, its function was
related to the afferent innervation of the inner hair cells (IHCs) by
type I SGNs.12,13 Genetic disruption of CR could affect exocytosis
and sound encoding at the synapses of mouse IHCs and SGNs.14

However, its exact physiological role in the cochlea remains com-
plex and hypothetical. Understanding the unique distribution of
each calcium-binding proteins could shed light on their roles in
cochlear function and better understanding of how calcium levels
are controlled within the cochlea.15 The detailed analysis of tempo-
ral and spatial expression of CR in the central nervous system was
proposed to be essential in the field of brain development
research.16 The expression of CR in the developing and mature
mammalian cochlea was not exhaustively described, as previous
studies provided some information regarding CR immunoreactivi-
ty during cochlear development,17-19 but specific hair cell markers
for CR have not been reported to be localized in the outer hair cells
(OHCs) prior to the hearing onset and in adult. Also, conflicting
findings were reported in the literature (for example, CR expres-
sion was detected in the IHCs, supporting cells and the spiral lim-
bus in the guinea pig cochlea20,21), possibly due to methodological
limitations or differences in immunochemical staining techniques
and species difference. 

In the present study, we investigated in detail the expression
pattern of CR in the developing and mature mouse cochlea: our
findings revealed early and stable expression of CR in the SGNs
and their afferent neurite projections to the IHCs, further empha-
sizing its roles in the auditory afferent neurotransmission.22 The
developmentally-regulated expression of CR in the mouse cochlea
underscored its significance in cochlear ontogeny. Additionally, we
described the developmental expression of peripherin, a marker for
type II SGNs and type II afferent fibers,23,24 in the postnatal and
adult mouse cochlea. CR and peripherin exhibited different pat-
terns of expression, further substantiating that CR marks type I
afferent fibers.

Materials and Methods

Animals
All animal studies, including the mice euthanasia procedure,

were conducted in compliance with the regulations and guidelines
of Southeast University institutional animal care, adhering to the
standards set by the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC) and the Institutional
Animal Care and Use Committee (IACUC) guidelines.

Western blotting 
Western blotting was conducted using extracts from samples of

the entire cochlea of mice aged from postnatal day 0 (P0), P5, P8,
P14 to P28. Cochlear tissues were homogenized in ice-cold RIPA
Lysis Buffer (50 mM Tri-HCl, pH 7.6, 150 mM NaCl, 1% SDS,
1% Triton X-100, and 0.1 mM EGTA). The cochlear lysates were
then separated via SDS-PAGE and transferred electrophoretically
onto nitrocellulose membranes. Subsequently, the membranes
were blocked with non-fat milk, followed by immunoblotting
using rabbit anti-CR antibodies (dilution 1:200, #92635S, Cell
Signaling Technology, USA). A rabbit anti-GAPDH antibody
(1:1000; #KGAA002; Kagi biotech, Nanjing, China) served as an
internal loading control. The protein bands were visualized using
horseradish peroxidase-conjugated secondary antibody and were
detected with a chemiluminescence reagent (Biyuntian). The levels
of target proteins were quantified by the Quantity One System
(Bio-Rad, Hercules, CA, USA).

Immunofluorescence
Intraperitoneal injection of 10% chloral hydrate (0.2 mL/100

g) was used to anesthetize pregnant (gestational days 17-19) and
postnatal (P0-P28) BALB/c mice. Embryos were harvested at
embryonic days (E) 17 and 19, Embryos were quickly decapitated,
and their cochleae were dissected in ice-cold 4% paraformalde-
hyde in 0.1 M phosphate buffer (pH 7.4). Postnatal mice were
intracardially perfused with saline followed by 4% paraformalde-
hyde in 0.1 M phosphate buffer (pH 7.4). The detailed methods and
procedures of immunofluorescence staining were described in our
previous study.8,25 Briefly, after perilymphatic perfusion with the
fixative mentioned above, cochlea was postfixed in the same solu-
tion for 35 min at room temperature. The cochlea from mice older
than P5 was decalcified in 10% EDTA at pH 7.4. Following decal-
cification, the cochleae were immersed in a sucrose gradient (15%
for 3 h and 30% overnight). Subsequently, cochlear tissues were
embedded in an optimum cutting temperature compound at 4°C for
2.5 h, rapidly frozen at -20°C, and cryoembedded specimens were
then sectioned into serial sections (8 μm) on a cryostat, mounted
on glass slides.

Cochlear cryosections were treated for 45 min with 10% don-
key serum and 0.3% Triton X-100 in PBS at room temperature to
enhance cell membranes permeability to antibodies. The sections
were then incubated with primary antibodies diluted in 0.01M PBS
overnight or longer at 4°C. Primary antibodies used were as fol-
lows: rabbit anti-CR antibodies (dilution 1:200, #92635S; Cell
Signaling Technology, Danvers, MA, USA), mouse anti-CR anti-
bodies (1:100, #MAB1568; Merk Millipore, Burlington, MA,
USA), mouse anti-synaptophysin antibodies (1:200, #9020, Cell
Signaling Technology), Sox2 monoclonal antibody (Btjce), Alexa
Fluor™ 488 (1:100, #53-9811-82; Invitrogen, Waltham, MA,
USA), mouse anti-TUJ1 antibody (1:200; BioLegend, San Diego,
CA, USA), mouse anti-neurofilament 200 antibodies (1:200;
Boster Bio, Pleasanton, CA, USA), rabbit anti-peripherin antibod-
ies (1:50, ab246502; Abcam, Waltham, MA, USA), In co-staining
experiments, CoraLite 594-conjugated phalloidin (1:250,
#PF00003; Proteintech, Wuhan, China) was applied to detect F-
actin of the hair cells of the organ of Corti. After rinsing three times
for 15 min in the 0.01 M PBS, the slides were incubated for 1 h at
37°C with the following secondary antibodies: donkey anti-rabbit
IgG conjugated with Alexa 488 or 555 (1:250; Yeasen, Shanghai,
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China), donkey anti-mouse IgG conjugated with Alexa 555 or 597
(1:400; Beyotime, Haimen, China). The control sections were
incubated with 0.01 M PBS, in the absence of primary antibodies.
In addition, rabbit (DA1E) monoclonal antibody IgG XP Isotype
control (#3900; Cell Signaling Technology) was used as a negative
control, instead of CR antibody. Then, the sections were washed
with PBS, fluorescence was preserved by sealing specimens with
an antifade mounting medium containing 4′,6-diamidino-2-
phenylindole (Biyuntian Biotechnology Co., Ltd., Shanghai,
China). Cryostat sections were examined using a Zeiss (LSM900)
laser scanning confocal microscope with 10× [numerical aperture
(NA) = 0.45], 20× (NA = 0.8), 40× (NA = 0.95) and 63× oil (NA
= 1.4) objectives at 1024 × 1024 pixels. Zen3.0 acquisition soft-
ware was used. Immunostaining presented in figures was represen-
tative of three individual experiments. Images were cropped and
resized using Adobe Photoshop CC 2019.

Results 

Expression patterns of CR in the mouse cochlea
during the late embryonic stages of development
by immunofluorescence

Western blotting analysis confirmed the specificity of the poly-
clonal anti-CR antibody employed in this study. A prominent band
with a molecular weight of approximately 29kDa, corresponding
to CR protein, was detected in the entire mouse cochlea across var-
ious developmental stages, validating the antibody’s suitability for
immunohistochemistry (Figure 1). 

In this investigation, CR expression in the mouse cochlea at
different developmental stages was explored. Consistent with the
Dechesne et al.18 CR immunoreactivity was detectable at later

embryonic stages. Additionally, during early postnatal develop-
mental stages, gradients in CR staining between cochlear turns
were observed. Consequently, our study focused on the expression
pattern of CR in the middle turn of the postnatal mouse cochlea.
Here, age-dependent changes in CR distribution were demonstrat-
ed. Prior to birth, at E17 (the earliest stage studied), double-
immunofluorescence analysis with the supporting cell marker
Sox2 showed only IHCs cytoplasm in the organ of Corti in the
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Figure 1. Western blotting validation of the anti-CR monoclonal
antibody. A strong band at approximately 29 kDa is detected in
mouse cochlea at P0, P5, P8, P14 and P28. GAPDH serves as the
loading control for Western blot.

Figure 2. CR immunolabeling in the mouse cochlea at E17 and E19. A-C) At E17, CR immunolabeling was only found in the IHCs in
the middle turn. Sox2 labeled HCs and supporting cell nuclei in the organ of Corti, as well as the glial cells. D-F) At E19, CR immunore-
activity was observed in the IHCs, and its expression occurred in the SGNs, Sox2-positive glial cells were negative for CR. GER, greater
epithelial ridge; IHC, inner hair cell; OHC, outer hair cell; SGN, spiral ganglion neuron.
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Figure 3. CR immunolabeling in the mouse cochlea at P0 and P2. A,B) A low-magnification view of the cross-sections of the mouse
cochlea labeled with CR (green) at P0; in the apical turns, CR was not expressed in the IHCs, but only in the SGNs; in the middle turns,
both IHCs and most of SGNs were immunoreactive for CR. C) Detail of CR (green) and phalloidin (red) labeling in the middle turn of P0
mouse cochlea; CR was not detectable in the greater epithelial ridge; CR immunoreactivity was only present in the IHC, colocalization of
CR with phalloidin was found in the cuticular plates of IHCs. D-F) Double labeling with CR (green) and neural marker TUJ1 (red) expres-
sion in the peripheral processes of P0 cochlea and the merged image + DAPI; CR immunoreactivity was virtually absent under the IHCs.
G-I) Double labeling of CR (green) with SGNs marker TUJ1 (red) expression in the P0 SGNs and the merged image + DAPI; CR immuno-
labeling was present in both the cytoplasm and the nucleus of SGNs identified by TUJ1. J) Overview of CR immunolabeling in the mouse
cochlea at P2. K) Double labeling of CR (green) with TUJ1 (red) expression in the P2 SGNs and the merged image + DAPI; CR was
detectable in the OHCs, but not three rows of OHCs. CR immunolabeling was also observed in the peripheral processes (arrowheads)
reaching the IHCs. L) Double labeling of CR (green) with TUJ1 (red) expression in the P2 SGNs and the merged image + DAPI; a small
population of SGNs was unstained for CR. GER, greater epithelial ridge; IHC, inner hair cell; OHC, outer hair cell; SGN, spiral ganglion
neuron; CP, cuticular plates.
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middle turn exhibited CR immunoreactivity,8 no CR labeling was
detected in the apical turn. Sox2-positive HCs and supporting cell
nuclei were also not labelled by CR (Figure 2 A-C). At E19, CR
maintains its expression in the IHCs, but no OHCs labeling was
detected. CR immunolabelling was observed in the SGNs in the
middle turn (Figure 2D-F).

Expression patterns of CR in the mouse cochlea
during postnatal development by immunofluores-
cence

At birth, CR maintains its expression in the IHCs in the organ
of Corti and SGNs, while no CR positivity is observed in the IHCs
in the apical turn, and other structures in the organ of Corti showed
no immunoreactivity for CR (Figure 3 A-C). TUJ1-labeled periph-

eral neurites of the SGNs appeared almost negative for CR at this
stage (Figure  3D-F). However, most SGNs identified by the TUJ1
immunostaining, but not all, were immunoreactive for CR, present
in both the cytoplasm and the nucleus of the SGNs (Figure 3 G-I).
At P2, CR began to be expressed in the OHC and the peripheral
neurites of the SGNs innervating the IHCs (Figure 3 J-L). By P5,
three rows of OHCs and IHCs displayed CR immunoreactivity, CR
and phalloidin were colocalized in the cuticular plates (Figure 4 A-
C). Besides SGNs, CR staining was also evident in their afferent
neurite projections to the base of the developing IHCs (Figure 4 D-
I). At P8, nerve fibers in the cochlear modiolus were CR positive.
CR was expressed in the IHCs and SGN in all three cochlear turns
(Figure 5A). At this stage, CR expression was detected in the
numerous round-shaped plasma membrane of SGNs, rather than

Figure 4. CR immunolabeling in the mouse cochlea at P5. A-C) Detail of CR (green) and phalloidin (red) labeling in the middle turn of
P5 mouse cochlea; CR was detectable in the IHC and OHC, colocalization of CR with phalloidin was found in the cuticular plates of the
IHC and OHC; CR-positive cochlear neural fibres (arrowheads) reached the IHCs. D-F) Double labeling with CR (green) and neural mark-
er TUJ1 (red) expression in the peripheral processes of P5 cochlea and the merged image + DAPI; CR partly colocalized with TUJ1 in the
peripheral processes (arrowheads) in the P5 osseous spiral lamina. G-I) Double labeling with CR (green) and SGNs marker TUJ1 (red)
expression in the P5 SGNs and the merged image + DAPI; most of CR-expressing SGNs somas (arrowheads) were double-labeled by
TUJ1. GER, greater epithelial ridge; IHC, inner hair cell; OHC, outer hair cell; SGN, spiral ganglion neuron; CP, cuticular plates; OSL,
osseous spiral lamina.
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long process on the same side of the SGNs bodies (Figure 5B).
CR-positive distal peripheral nerve processes of the SGNs formed
contacts with the IHC base. Previous fluorescent histochemical
studies suggested that CR-labelled nerve fibres in the mammalian
cochlea represented afferent fibres and correlated with the type I
SGNs neurite innervation pattern.26,27 To further demonstrate CR-
positive neural elements, we utilized the dual-labeling of CR with
the presynaptic protein synaptophysin and neurofilament 200 (NF
200).28,29 NF 200 identified SGNs and afferent nerve fibers. CR-
positive afferent nerve fibers did not colocalize with synapto-
physin-positive presynaptic nerve endings beneath the IHCs, indi-

cating their non-efferent nature (Figure 5C). CR-positive nerve ter-
minals predominantly innervated the pillar sides of IHCs and co-
localized with NF 200 (Figure 5D-F). CR staining was evident in
the peripheral neurites within the osseous spiral lamina, showing
double-labeling with NF 200 (Figure 5G-I). At the onset of hear-
ing, CR expression persisted in the IHCs, OHCs, and nerve fibers
innervating the IHCs (Figure 6 A-C). Portions of NF 200-positive
nerve fibers lacked CR immunoreactivity within the osseous spiral
lamina at P14 (Figure 6 D-F). CR continued to be present in the
plasma membrane of SGNs (Figure 6 G-I). In the adult cochlea,
CR displayed a similar expression pattern as at P14, with afferent

[page 304]                                                   [European Journal of Histochemistry 2024; 68:4137]

Figure 5. CR immunolabeling in the mouse cochlea at P8. A,B) A low-magnification view of the cross-sections of the mouse cochlea
labeled with CR (green) at P8; the expression of CR in the IHCs and OHCs was observed in the apical turns; nerve fibers within the
cochlear modiolus were immunoreactive for CR; many CR-positive SGNs (arrowheads) were membranous and round-shaped. C) Dual-
labeling of CR (green) with efferent terminals marker synaptophysin (red) in the P8 organ of Corti; presynaptic synaptophysin spots under-
neath the IHCs did not coexpressed with CR-labelled afferent nerve fibers, CR-labeled afferent terminals (arrowheads) was seen in contact
with the IHCs. D-F) Dual-labeling of CR (green) with afferent terminals marker NF200 (red) in the P8 organ of Corti; CR-labelled nerve
fibres (arrowheads) innervating the pillar side of the IHC were coexpressed with NF200. G-I) Double labeling with CR (green) and NF200
(red) in the P8 osseous spiral lamina and the merged image + DAPI; CR was colocalized with NF200 in the P8 osseous spiral lamina.
GER, greater epithelial ridge; IHC, inner hair cell; OHC, outer hair cell; SGN, spiral ganglion neuron; CM, cochlear modiolus; CP, cutic-
ular plates; OSL, osseous spiral lamina.
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synaptic terminals under the IHCs and peripheral afferent process-
es maintaining CR expression and co-localizing with NF 200
(Figure 7 A-F). CR immunolabelling in the adult SGNs also
showed membranous localization (Figure 7 G-I). Co-staining of
CR and type II SGNs marker for peripherin revealed no co-local-
ization of CR with peripherin-positive type II SGNs (Figure 7 J-L).
Considering the preferential expression of CR in type I SGNs and
the significant morphological and functional differences between
type I and type II SGNs, we also examined the immunolocalization
of the type II SGN marker peripherin in the developing mouse
cochlea. Peripherin  immunoreactivity was virtually absent prior to

birth (data not shown), inconsistent with previous studies.23,24

However, from P1 through adulthood, our immunolabeling data on
the distribution pattern of peripherin in the mouse cochlea was
largely consistent with previous results. At P1, peripherin-positive
type II afferent nerve fibers were  observed  under the IHCs and
OHCs (Figure 8A), however, minimal peripherin immunolabeling
was detected in the SGNs (Figure 8 B,C). By P5, type II SGNs
began to express peripherin, which was confined to type II afferent
nerve fibers under the OHCs (Figure 8 D-F). At P8, peripherin-
positive type II SGN neurites extended beyond the floor of the tun-
nel of Corti to the OHCs, with a small subset of type II SGNs

Figure 6. A,B) Detail of CR (green) and phalloidin (red) labeling in the middle turn of P14 mouse cochlea; CR was detectable in the P14
IHC and OHC, colocalization of CR with phalloidin was found in the cuticular plates of the hair cells; CR-positive cochlear neural fibres
(arrows) preferentially contacted the pillar side of the IHC. C) CR immunolabeling in the peripheral neurites innervating the IHC was also
observed in the basal turn of P14. D-F) Double labeling with CR (green) and NF200 (red) in the P14 osseous spiral lamina and the merged
image + DAPI; CR was colocalized with NF200 in the P14 osseous spiral lamina. G-I) Double labeling with CR (green) and NF200 (red)
expression in the P14 SGNs and the merged image + DAPI; CR immunolabeling was present in the plasma membrane of SGNs; NF200-
positive the cytoplasm of SGNs appeared surrounded by CR-positive the plasma membrane of SGNs. IHC, inner hair cell; OHC, outer
hair cell; SGN, spiral ganglion neuron; OSL, osseous spiral lamina; SB, spiral limbus.
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immunoreactive for peripherin (Figure 8 G,H). At this develop-
mental stage, no co-localization of peripherin with the neuronal
marker TUJ1 was observed (Figure 8I). At P14, there was an
absence of CR immunoreactivity in the type II afferent fibers (not
shown). Co-staining of peripherin and NF200 revealed co-localiza-
tion of peripherin-positive type II SGNs with NF200 (Figure 8 J-
L), as previously shown.

Discussion
In this study, we describe in detail the spatio-temporal expres-

sion of CR in the mouse cochlea ranging from E17 to P28. Using
double immunofluorescence staining for CR with either peripherin

or synaptophysin, our results showed that CR was specifically
localized to type I SGN and their afferent neurite projections to
IHCs, supporting further a role of CR in the formation of afferent
neurotransmission in the mouse cochlea. It is well established that
primary  auditory nerve fibers show a spontaneous activity prior to
the onset of hearing, which play an important role in synaptic mat-
uration and refinement of auditory circuits.30 Cochlea ectomy stud-
ies showed that cochlea removal at P5 lead to a decreased CR
immunostaining in terminals originating from auditory nerve
fibers, which were probably caused by a loss of spontaneous activ-
ity.31 CR is known to be required for normal developmental
process of both the central and peripheral nervous systems, includ-
ing axon guidance and synaptogenesis.32-34 Prior studies of
cochlear development in mice have showed that the early postnatal
period, until the onset of hearing generally around P12-P14, is crit-

Figure 7. A-C) Detail of CR (green) and NF200 (red) labeling in the middle turn of adult mouse cochlea; afferent terminals (arrows) inner-
vating the IHCs are double positive for CR (green) and NF200 (red). D-F) Double labeling with CR (green) and NF200 (red) in the adult
osseous spiral lamina and the merged image + DAPI. CR was colocalized with NF200 in the adult osseous spiral lamina. G-I) Double
labeling with CR (green) and NF200 (red) expression in the adult SGNs and the merged image + DAPI; CR immunolabeling was present
in the plasma membrane of adult SGNs. CR-positive the plasma membrane of SGNs was not colocalized with NF200-positive the cyto-
plasm of SGNs. J-L) Double labeling with CR (red) and peripherin (green) in the adult SGNs and the merged image + DAPI; CR was not
colocalized with peripherin in the adult SGNs. IHC, inner hair cell; OHC, outer hair cell; SGN, spiral ganglion neuron; OSL, osseous spiral
lamina.
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ical for the correct establishment of afferent innervation to the
cochlear sensory hair cells, with significant pruning and refine-
ment of SGN neurites.35,36 To the best of our knowledge, this study
is the first to demonstrate the differential expression of CR in the
afferent neurite projections to the developing IHCs during this crit-
ical period. Between P2 and P5, when the IHC innervation is
exclusively from type I SGNs, CR-labeled SGN peripheral
processes extended into the bases of IHCs. As the cochlear afferent
innervation reorganized towards an adult-like state, CR maintained
its expression in the SGNs and their distal neurite processes inner-
vating the IHC, indicating that CR expression in the cochlea may
play important roles in afferent synaptic pruning and maturation.
CR expression in the SGNs and cochlear afferent nerve fibers has
been reported to play a role in neuroprotection against diabetic
neuropathy.37 Additionally, CR’s neuroprotective role against age-

related calcium overload in the auditory neurons has been estab-
lished.38,39 The expression of CR coincides well with neuronal dif-
ferentiation and neurogenesis,40,41 and knock down of CR can lead
to disrupted development of motor neurons.42 Apart from its partic-
ipation in  the development of cochlear neural circuitry, expression
of CR in sensory hair cells was developmentally regulated. CR
expression was shown in the differentiating IHCs  as early as E17,
and the expression of CR in the IHCs was earlier than that in the
OHCs. This result is consistent with the idea that the IHCs mature
before the OHCs.43 As the maturation of the mouse cochlea pro-
ceeded, the expression of CR in the IHCs and OHCs was main-
tained throughout adulthood, suggesting its expression was associ-
ated with the differentiation and maturation of sensory hair cells.
where CR may be relevant to increased Ca2+ buffering capacity.44

Co-staining of CR and phalloidin showed its specific expression in

Figure 8. A) Detail of peripherin (green) immunolabeling in the P1 mouse cochlea; peripherin-positive type II cochlear afferent nerve
fibers were found below the IHCs and OHC. B,C) Double labeling with peripherin (green) and TUJ1 (red) in the P1 SGNs and the merged
image + DAPI; type II SGNs was negative for peripherin. D,E) Peripherin-positive type II cochlear afferent nerve fibers innervated mainly
three rows of OHC. F) Type II SGNs of P5 were immunoreactive for peripherin. G) Peripherin-positive type II cochlear afferent nerve
fibers projected beyond the floor of the tunnel of Corti to the OHCs. H,I) Type II SGNs of P8 were immunoreactive for peripherin, periph-
erin-immunoreactive type II SGNs did not colocalize with TUJ1-labelled SGNs. G,K,L) Double labeling with peripherin (green) and
NF200 (red) in the adult SGNs and the merged image + DAPI; peripherin was colocalized with NF200 in the adult SGNs. GER, greater
epithelial ridge; IHC, inner hair cell; OHC, outer hair cell; SGN, spiral ganglion neuron.
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the cuticular plates of IHCs and OHCs, which further suggest the
crucial role of CR in the hearing.45 Abnormal expression of CR has
been proposed to be associated with the certain disease process,
such as Hirschsprung disease and Alzheimer’s diseases.46,47

Meanwhile, changes in CaBP28K expression have been reported
to be involved in hearing impairment caused by thyroid hormone
deficiency, which is known to induce numerous functional and
morphological deficits in the brain during early developmental
stages.48 Several studies have reported that thyroid hormone defi-
ciency alters the development of neurons expressing CR in both
the central and peripheral nervous systems, and hypothyroidism
affects the growth of sensory neurons expressing CR protein main-
ly during embryonic life.49-51 In adult hypothyroid rats, the mean
number of CR-positive neurons per spinal cord section was signif-
icantly decreased compared to normal adult rats.52 It is tempting to
speculate that changes in the expression of CR in the SGNs and
afferent fibers might also participate in sensorineural hearing loss
attributed to hypothyroidism. Our findings of CR immunolocaliza-
tion suggested a potential link to auditory neuropathy, character-
ized by normal OHCs function but abnormal neural conduction of
the auditory pathway.53

This paper extended and refined previous studies of the spatio-
temporal pattern of CR expression in the developing mouse
cochlea, demonstrating its specific expression in the developing
and adult SGNs, their peripheral neurite processes innervating the
IHCs, as well as in sensory hair cells. CR appeared to play a role
in the reorganization and establishment of cochlear afferent inner-
vation, which occurs prior to the onset of hearing.
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