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New frontiers of inositide-specific phospholipase C in nuclear signalling
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Strong evidence has been obtained during the last 16 years
suggesting that phosphoinositides, which are involved in the
regulation of a large variety of cellular processes in the cyto-
plasm and in the plasma membrane, are present within the
nucleus. A number of advances has resulted in the discovery
that nuclear phosphoinositides and their metabolizing
enzymes are deeply involved in cell growth and differentia-
tion. Remarkably, the nuclear inositide metabolism is regu-
lated independently from that present elsewhere in the cell.
Even though nuclear inositol lipids generate second mes-
sengers such as diacylglycerol and inositol 1,4,5-trisphos-
phate, it is becoming increasingly clear that in the nucleus
polyphosphoinositides may act by themselves to influence
functions such as pre-mRNA splicing and chromatin struc-
ture. This review aims at highlighting the most significant and
up-dated findings about inositol lipid metabolism in the
nucleus.
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(PtdIns) metabolism is now widely recognized
(Martelli et al., 1999a) and hints at the nucle-
us as a functional compartment for PtdIns metabo-
lism (Martelli et al., 2003). Indeed, it has been
demonstrated that nuclei contain many of the
enzymes involved in the classical PtdIns cycle,
including kinases required for the synthesis of
PtdIns(4,5)P2, inositide-specific phospholipase C
(PI-PLC), and diacylglycerol kinase (DGK)
(D’Santos et al., 1998; Martelli et al., 1999a; Cocco
et al., 2001; Martelli et al., 2002a; Irvine, 2003).
More importantly, specific changes in the nuclear
PtdIns metabolism have been implicated in cell
growth, differentiation, and neoplastic transforma-
tion (Divecha et al., 2000; Tamiya-Koizumi, 2002;
Martelli et al., 2002b). The nucleus also contains 3-
phosphorylated inositol lipids and the enzymes
which synthesize them, i.e. phosphoinositide 3-kinas-
es (PI3Ks) (Neri et al., 2002). The 3-phosphorylat-
ed lipids are not substrate for any know PI-PLC but
act themselves as second messengers (Vanhaese-
broeck et al., 2001).
In this review, we shall focus on nuclear PI-PLCs,
namely PI-PLCP1 and its involvement in cell prolif-
eration and differentiation.

T he existence of a nuclear phosphatidylinositol

Nuclear polyphosphoinositide metabolism

Smith and Wells (1983) described the ability of iso-
lated rat liver nuclear envelopes to synthesize in vitro
phosphatidylinositol 4-phosphate (PtdIns(4)P), and
phosphatidylinositol 4, 5-phosphate (PtdIns(4,5)P-),
even though the isolation of nuclei did not fulfill the
rigorous criteria of purity, which allowed Cocco et al.
(1987) to demonstrate, using detergent-treated
murine erythroleukemia (MEL) cell nuclei, devoid of
their envelope, that they were capable of synthesizing
in vitro PtdIns(4)P and PtdIns(4,5)P:, and nuclear
PtdIns(4,5) P2 synthesis became more pronounced if
the cells were differentiated along the erythroid path-
way by dimethyl sulfoxide (DMSO0). To rule out cyto-
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plasmic contamination of nuclear preparations the
authors relied on electron microscopy analysis, meas-
urement of enzymatic activities and/or immunoblot-
ting analysis of markers for cytoplasmic constituents,
such as glucose-6-phosphatase and [3-tubulin, respec-
tively. Indeed in the paper by Cocco et al. (1987) a
strong clue for the existence of a separate nuclear
inositide metabolism came from the observation that
the striking changes in PtdIns(4,5) P2 in vitro synthe-
sis were only detectable in pure nuclear preparations
and not in whole cell homogenates. In the following
years, the availability of antibody probes to the
enzymes of the inositol lipid cycle provided a stronger
evidence that these molecules are localized also in the
nucleus, by means of techniques that do not require
organelle isolation, such as immunofluorescent stain-
ing. Nevertheless, it is clear that a nuclear fluorescent
signal given by an antibody raised to a protein
involved in phosphoinositide metabolism might also
be interpreted as a consequence of either a cross-
reaction and/or a fixation-generated artifact. The
advent of green fluorescent protein (GFP) technolo-
gy gave the opportunitys to study the enzymes
involved in nuclear inositide metabolism in living cells
(e.g. Bavelloni et al., 1999; Ciruela et al., 2000)
overriding problems such as fixation, or inadequate
antibody penetration. In addition, the identification of
sequences which are essential to the nuclear localiza-
tion of given enzymes and the possibility to express
(in some instances as GFP hybrids) complementary
DNA of the proteins of interest which are mutated,
and have thus lost their capacity to localize in the
nucleus, have been shown to represent other extreme-
ly valuable tools to unequivocally demonstrate intra-
nuclear localization of phophoinositide metabolism-
related enzymes, such as DGK, phosphatidylinositol
5-phosphate 4-kinase, and PI-PLCP1 (Topham et al.,
1998; Ciruela et al., 2000; Faenza et al., 2003).

Nuclear PI-PLCB1, DAG and protein kinase C
(PKC)cx

The literature regarding nuclear PI-PLC is quite
extensive (see Cocco et al., 2001) but the isoform
that has been most consistently linked with sig-
nalling in the nucleus is PI-PLCP1. The first hint
that a PI-PLC activity might be activated in the
nucleus came from experiments performed with qui-
escent Swiss 3T3 cells mitogenically stimulated
with insulin-like growth factor-1(IGF-1). Within 2
min stimulation time, IGF-1 produced in membrane-
stripped nuclei a decrease in in PtdIns(4)P and
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PtdIns(4,5)P2mass, a concomitant increase in DAG
levels, and a translocation of protein kinase C
(PKC) (Divecha et al.,1991). No changes in
PtdIns(4)P, PtdIns(4,5)P:, and DAG amount were
detected in whole cell homogenates or in nuclei in
which the envelope was still present. Bombesin,
another powerful mitogen for these cells, stimulated
inositide metabolism only at the plasma membrane
level but not in the nucleus. These authors hypothe-
sized about a possible role played by nuclear DAG
to serve as chemoattractant for translocation of
PKC to the nuclear compartment. In addition we
demonstrated in nuclei of 3T3 mouse fibroblasts the
presence of PI-PLCB1 whose activity was up-regu-
lated in response to IGF-1 stimulation (Martelli et
al., 1992). In contrast, in these cells the -y1 isoform
of PI-PLC was confined to the cytoplasm. This kind
of subcellular distribution of the two PI-PLC iso-
forms was subsequently confirmed in rat liver
(Divecha et al., 1993). Nuclear PI-PLCPB1 plays an
important role as a mediator of the mitogenic stim-
ulus exerted by IGF-1 on Swiss 3T3 cells, because
inhibition of PI-PLCP1 expression by antisense
RNA renders these cells far less responsive to IGF-
1, but not to platelet-derived growth factor
(Manzoli et al., 1997). If the function of nuclear
DAG is to attract PKC isoforms within the nucleus,
namely PKC-a (see Cocco et al., 2001 for more
details) then it should conceivably exist a mecha-
nism to turn off the signal. This role could be ful-
filled by DGK, the enzyme which phosphorylates
DAG yielding phosphatidic acid (PA) (Topham and
Prescott, 1999). The fact that both isolated nuclear
envelopes and nuclei produced in vitro radiolabeled
PA, suggested the presence of DGK at the nuclear
level (Smith and Wells, 1983; Cocco et al., 1987).
Several independent laboratories have demonstrat-
ed the existence of DGK isoforms within the nucleus
and have shown that this class of isozymes is indeed
involved in controlling nuclear DAG mass after
stimulation with a number of agonists (reviewed in
Martelli et al., 2002a).

As to IGF-1-stimulated Swiss 3T3 cells, our lab-
oratory has highlighted that exposure to this mito-
gen resulted in the stimulation of a nuclear DGK
activity, but not of the same activity present in
whole cell homogenate. An inverse relationship
between nuclear DAG mass and DGK activity levels
was shown by time course analysis. If 3T3 cells had
been pre-incubated with two DGK pharmacological
inhibitors, R59022 and R59949, the IGF-1-
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Figure 1. Schematic diagram summarizing the presence and signalling activity of nuclear PI-PLCs.

dependent rise in nuclear DGK activity was blocked
and intranuclear levels of DAG stayed elevated for a
longer period than in control cells. Also nuclear
PKC-a activity remained higher in cells treated with
the DGK inhibitors than in untreated cells.
Furthermore, the two pharmacological inhibitors
markedly potentiated the mitogenic effect of IGF-1.
An inference based on these findings is that nuclear
DGK plays a key role in regulating the levels of DAG
present in the nucleus and that DAG and PKC-a are
key molecules for the mitogenic effect which IGF-1
exerts on Swiss 3T3 cells (Martelli et al., 2000a).

Nuclear PI-PLC/31 and its regulation

A key issue about nuclear PI-PLCP1 is how it is
regulated. The conventional view of PI-PLCf1 acti-
vation comes from details of its action at the plas-
ma membrane. It has been suggested that both
Goag/a and GPy_subunits can activate PI-PLCP1.
The region of PI-PLCP1 that interacts with Gaqg
differs from that which interacts with Gfy, the for-
mer binding to the extensive C-terminal tail charac-
teristic of the PI-PLCP isoforms while the latter has
highest affinity for the N-terminal PH domain
(Rebecchi and Pentyala, 2000; Rhee, 2001).
Although there are reports that some subunits of

heterotrimeric G-proteins, for example ai, can
traslocate to the nucleus (Crouch and Simson,
1997), there is yet no evidence that ag/uiis present
within the nuclear compartment. Consistently, nei-
ther GTP-y-S nor AIF4 stimulated nuclear PI-
PLCPB1 in vitro activity (Martelli et al., 1996). A
clue to a possible novel mechanism for activation of
nuclear PI-PLCPB1 has come from the observation
that it is hyper-phosphorylated in Swiss 3T3 nuclei
in response to IGF-1 and that this is abolished by
preventing the translocation of p42/44 mitogen-
activated protein kinase (MAPK) to the nucleus
(Martelli et al., 1999b). Supporting evidence was
obtained with both insulin-treated NIH 3T3 cells
(Martelli et al., 2000b) and IL-2 treated NK cells
(Vitale et al., 2001) where activation of nuclear PI-
PLCB1 was blocked by PD098059, an inhibitor
selective for the MAP kinase pathway. A more clear
proof of a direct involvement of MAPK has come
from the demonstration that, following IGF-1 stim-
ulation of quiescent Swiss 3T3 cells, activated
p42/44 MAPK translocates to the nucleus where it
phosphorylates Ser 982 in the C-terminal tail of PI-
PLCP1 (Xu et al., 2001). This phosphorylation was
inhibited by PD098059 and could be mimicked by
recombinant PI-PLCP1 protein and activated
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MAPK in vitro. It is conjectured that phosphoryla-
tion in vivo might cause a recruitment of additional
components which enhance PI-PLC_1 activity. The
significance of Ser 982 phosphorylation to IGF-1
action, however, is seen in 3T3 cells stably trans-
fected with PI-PLCP1 harbouring a Ser 982 Gly
mutation. This mutation acts in a dominant-negative
manner on IGF-1 dependent mitosis (Xu et al.,
2001) and this concurs with the findings of our pre-
vious report where PI-PLCP1 was down regulated
in 3T3 cells, resulting in loss of mitogenicity
(Manzoli et al., 1997). By contrast, a PI-PLCf1
Ser 982 Gly mutant which also lacks the nuclear
localization sequence had no effect on the IGF-1
response (Xu et al., 2001). To our knowledge phos-
phorylation at this site is nucleus-specific and has
not been reported for cytosolic PI-PLCP1. This rep-
resents an activation mechanism which is distinct
from that at the plasma membrane and peculiar to
the actions of the nuclear phosphoinositide cycle. In
addition, it is significant that within the PI-PLCP
family, the p1 isoform is the only one which pos-
sesses @ MAPK phosphorylation site in its C-termi-
nal tail.

Recent evidence suggests that PKC-a is involved
in the regulation of nuclear PI-PLCP1 in that PI-
PLCPL is deactivated by PKC-a and that this is a
critical step in attenuating the phospholipase activ-
ity that drives the nuclear inositol lipid cycle
(reviewed in Cocco et al., 2002) .

Cell differentiation and nuclear PI-PLC[31
signalling

The role of PI-PLCPB1 in nuclear signalling is
strengthened by evidence obtained in differentiating
systems. In case of MEL cell mentioned above,
DMSO0-dependent erythroid differentiation is accom-
panied by a decrease in nuclear PI-PLCP1 enzymat-
ic activity and protein as well as DAG mass (Martelli
et al., 1994; Divecha et al., 1995). Conversely, MEL
cells differentiation is attenuated by maintaining
high nuclear PI-PLC B1 levels via transfection of a
PI-PLC B1 cDNA construct, whereas a mutant that
lacks the nuclear localization sequence (NLS) has
no effect (Matteucci et al., 1998). It is interesting
that in cell overexpressing nuclear PI-PLC 1 there
was a reduced amount of p45/NF-E2, a transcrip-
tion factor that regulates B-globin gene expression
(Faenza et al., 2002). It has been shown that the
overexpression of nuclear PI-PLC 1 commits MEL
cells to progress into the G1 phase of the cell cycle
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even in the absence of serum and that this correlates
with the activation of the cyclin D3/cdk4 system
(Faenza et al., 2000). This supports the idea that dif-
ferentiation requires withdrawal from the cell cycle
and that the continued presence of PI-PLCP1 in the
nucleus maintains an undifferentiated, proliferative
phenotype. However, at present is totally unclear how
increased expression of nuclear PI-PLCP1 could up-
regulate cyclin D3 and cdk4. In the physiological dif-
ferentiation of C2C12 skeletal muscle cells in
response to IGF-1 and insulin stimulation there is a
marked increase in nuclear PI-PLCPB1 (Faenza et
al., 2003). In this case, the timing of PI-PLCB1 syn-
thesis and its accumulation in the nucleus precedes
that of the late muscle marker Troponin T by 24 h.
Moreover, the expression of a transfected PI-PLCp1
mutant lacking the NLS suppressed the differentia-
tion of C2C12 myoblasts into multinucleate
myotubes. These results suggest that nuclear PI-
PLCB1 is also a player in myoblast differentiation by
functioning as a positive regulator in this process,
which is dependent on the activation of the type 1
IGF receptor, the same responsible for nuclear PI-
PLCP1 stimulation in quiescent 3T3 cells (see for a
review Cocco et al., 2001). A possible link is that
cyclin D3 is indeed a target of nuclear PI-PLCP1
signaling since a mechanism specific for the differ-
entiation of skeletal myoblasts implies that at the
onset of differentiation, MyoD activates cyclin D3
which then sequesters unphosphorylated retinoblas-
toma protein leading to irreversible exit of differen-
tiating myoblasts from the cell cycle (Cenciarelli et
al., 1999).

PI-PLCs 3 2,3,4, y and ¢ in the nucleus

Molecular structure analysis has revealed that,
among PI-PLC isozymes, the four members of the b
family are unique, in that they contain a high pro-
portion of basic residues located at their C-terminal
domain. It has been demonstrated that this region is
critical for allowing nuclear localization of these
isozymes (Kim et al., 1996). Therefore, it came to
no surprise that the -2, -3, and -4 isozymes have
been shown to be present in the nucleus of either
HL60 or NIH 3T3 cells (Bertagnolo et al.,
1997;Cocco et al., 1999). Since the amount of both
PI-PLCB2 and B3 isozymes increased in the nucle-
us following incubation of HL60 cells with either
all-trans-retinoic acid (ATRA) or vitamin D3 (two
differentiating agents, see later), it was concluded
that these two members of the p family of PI-PLC



play some as yet unidentified important role at the
nuclear level during differentiation of HL-60 cells
(Bertagnolo et al., 1997).

Members of the -y family of PI-PLC do not pos-
sess any known NLS. However, they have been
reported to be present in the nucleus (e.qg.
Bertagnolo et al., 1995). In the nucleus of differen-
tiated HL60 cells, PI-PLCy1 forms an immunopre-
cipitable complex together with Vav (Bertagnolo et
al., 1998). Since Vav possesses a nuclear localiza-
tion signal, it might be that it facilitates intranuclear
migration of PI-PLCyl, conceivably through a
piggy-back mechanism, as reported for other pro-
teins such as IkBa (Turpin et al., 1999).

In this context the findings by Diakonova et al.
(1997) appear interesting, given the demonstration
that PI-PLCy1l localized to the nucleus of highly
transformed and proliferating cell lines but not to
the nucleus of primary embryo skin or lung fibrob-
lasts, where the enzyme was primarily cytoplasmic.
An important suggestion from this study is that the
differential subcellular localization of PI-PLCy1 in
normal or highly transformed cell lines could either
be due to the degree of transformation of the cell
type or be related with the S-phase of the cell cycle.
The latter hypothesis seems more plausible because
an increased amount of PI-PLCYy1 was detected in
nuclei of 22 h regenerating rat liver (Neri et al.,
1997).

PI-PLCO1 has been reported to shuttle between
the nucleus and the cytoplasm. Export from the
nucleus requires a typical nuclear export sequence
(NES), which was mapped at amino acid residues
164-177 of the EF-hand sequence. This leucine-rich
functional NES is absent from PI-PLCO4. Nuclear
export of PI-PLCO1 was sensitive to leptomycin B,
a selective inhibitor of NES-dependent nuclear
export (Yamaga et al., 1999). However, the func-
tional significance of nuclear PI-PLC&1 and of its
export are at present undefined.

An 85-kDa PI-PLCO4 isoform was found in
nuclei from regenerating rat liver, serum-stimulated
Swiss 3T3 cells, AH7974 rat ascites hepatoma cells
and src-transformed 3Y1 cells, but not in nuclei
from normal liver or quiescent fibroblasts (Liu et
al., 1996). The nuclear 84 isoform increases dra-
matically at the transition from the G: to the S
phase, and remains at high levels to the end of the
M phase (Liu et al., 1996). It has been claimed that
this isoform is specific to the nucleus, although oth-
ers have not confirmed this (Lee and Rhee, 1996).
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