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The aim of our study was to show whether the cells isolated
from testes of patients underwent bilateral orchiectomy for
prostatic cancer are able to grown in vitro, and if so, are func-
tionally active. Immuncytochemistry was performed to show
the functional status of human cultured cells. In detail,
immunolocalization of luteinizing hormone receptors (LHR),
mitochondria, and cytoskeletal elements was demonstrated.
Moreover, radioimmunological assay was used to measure
testosterone secretion by cultured Leydig cells. Using
Nomarski interference contrast and fine immunofluorescence
analysis the positive immunostaining for LHR was observed in
almost all Leydig cells, however it was of various intensity in
individual cells. Testosterone measurement revealed signifi-
cant difference between testosterone secretion by hCG-stimu-
lated and unstimulated Leydig cells (p<0.05). Moreover,
testosterone levels were significantly higher in 24- and 48-
hour-cultures than in those of 72 hrs (p<0.05). Morphological
analysis of Leydig cells in culture revealed the presence of
mononuclear and multinucleate cells. The latter cells occurred
in both hCG-stimulated and unstimulated cultures. In Leydig
cells labeled with a molecular marker MitoTtracker, an abun-
dance of mitochondria and typical distribution of microtubules
and microfilaments were observed irrespective of the number
of nuclei within the cell, suggesting no functional differences
between mono- and multinucleate human Leydig cells in vitro.
Since the percentage of multinucleate cells was similar in both
hCG-stimulated and unstimulated cultures (23.70% and
22.80%), respectively, the appearance of these cell popula-
tion seems to be independent of hormonal stimulation.
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sis depends on the existence of mature Leydig

cells in the testicular interstitium. Human
Leydig cells arise from mesenchymal cells or fibrob-
last-like precursor cells through a hormonally regu-
lated differentiation process (Chemes, 1996).
Production of testosterone in human and mam-
malian Leydig cells is dependent on LH stimulation
in vivo and on LH/hCG stimulation in in vitro con-
ditions; to respond to hormonal regulation the cells
are equipped with functional receptors for LH
(Amador and Bartke, 1987; Simpson et al., 1987;
Mendis-Handagama et al., 1990; Cooke, 1996;
Ramadoss et al., 2006). In man, the A*>-metabolic
pathway is the major pathway for the metabolism of
pregnenolone to testosterone (Rommerts, 1990).
According to Hammar and Petersson (1986) in
human testis from young and elderly men with pro-
static carcinoma also the 5-ene pathway is pre-
ferred. For optimal steroidogenic function a number
of neuroendocrine and neuronal markers have been
demonstrated in human Leydig cells in vivo by the
group of Holstein (Middendorff et al., 1993; 1995).
Moreover, production of testosterone in Leydig cells,
requires the presence of functionally active enzymes
acting within mitochondria and the smooth endo-
plasmic reticulum (Payne and 0’Shaughnessy,
1996; for review see Haider, 2004).

Recent studies have shown that Leydig cells
become hypofunctional with age. In the rat, aged
Leydig cells produce less testosterone than Leydig
cells from young adult rats (Luo et al., 1996; for
review Zirkin et al., 1997). A detailed characteris-
tics of aged rat Leydig cells in vivo, including
reduced testosterone biosynthesis and reduced cell
volume has been described by Ewing and Zirkin
(1983). Now, there is evidence from in vitro studies
that reactive oxygen species can result in the inhibi-
tion of testosterone production in mouse Leydig
cells by affecting steroidogenic enzymes (Stocco et

I t is well established that testosterone biosynthe-
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al. 1993; Peltola et al., 1996; Cao et al., 2004).
Considering human samples as a very rare and
valuable biological material, the aim of this study
was to show whether Leydig cells obtained from
testes of elderly patients who underwent orchiecto-
my for prostatic cancer are able to grown in vitro,
and if so, are functionally active. For this purpose
localization of luteinizing hormone receptors
(LHR) and visualization of mitochondria and
cytoskeletal elements in both hCG-stimulated and
unstimulated Leydig cell cultures were performed,
as well as testosterone secretion by cultured Leydig
cells was measured. It is worth noting that the
effect of LH and an involvement of cytoskeletal
proteins in steroidogenesis of mouse Leydig cells in
vitro have been demonstrated by our own (Bilinska,
1989) and mitochondria have been described as
integrally involved in Leydig cell steroidogenesis
(Bilinska 1994; Kotula-Balak et al., 2001).

Materials and Methods

Human material

Human testes were removed from patients (n=4)
undergoing bilateral orchiectomy for prostatic can-
cer (The Urology Clinic, Collegium WMedicum,
Jagiellonian University). The patients ranged in age
from 60 to 67 years; they were physiologically nor-
mal. The Regional Commission of Bioethics at the
Jagiellonian University approved the study; all of
the patients had given their written, informed con-
sent.

The testicular tissue was chilled immediately
after surgical excision and transported on ice to the
laboratory where it was set up for Leydig cell iso-
lation and culture. All solutions were sterile and the
isolation procedure was performed under aseptic
conditions.

Cell isolation and culture procedure

All tissues used in this study were ascertained to
be histologically normal. A piece of decapsulated
testes was used for the preparation of Leydig cell
suspension as described previously (Chemes et al.,
1992) with a couple of modifications. Briefly, tes-
ticular tissue was carefully rinsed with fresh medi-
um Ham’s F-12/Dulbecco’s Modified Eagle medi-
um (DME; 1/1; v/v) supplemented with 15 mM
NaHCOs, 20 mM HEPES, pH 7.4; and antibiotics
(penicillin, 100 U/mL; streptomycin, 10 pg/mL;
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nystatin,10 U/mL) and gently dissected with for-
ceps. Then, the tissue was submitted to an enzymat-
ic digestion in the presence of 0.04% collagenase
(type I, Sigma Chemical Co. St Louis MO, USA)
and soybean trypsin inhibitor (1.0 pg/mL) in F-
12/DME medium, under a constant agitation at
34°C for 40 min. After three decantations the
supernatant was collected, filtered through a nylon
gauze and centrifuged at 200x g for 4 min. Then,
the cell pellet was washed twice and kept in fresh F-
12/DME medium. Next, the second collagenase
treatment was performed on residual tissue frag-
ments and all further steps of the procedure were
identical as above. Finally, suspended interstitial
cells obtained from the two enzymatic digestions
were purified on a 4-layer discontinuous Percoll
(Pharmacia, Uppsala, Sweden) gradient 21%,
26%, 34%, and 60% in F-12/DME. After cen-
trifugation, 800 x g, for 20 min at 4°C as low tem-
perature significantly prevents cell aggregation and
then centrifugation at room temperature with low-
speed, 90 x g for 10 min, the cell band between
34% and 60% Percoll containing Leydig cells was
collected, washed to remove Percoll, and resus-
pended in Ham’s F-12/DME medium (as above)
supplemented additionally with 2% fetal calf
serum and 10 pg/mL transferrin. The purity of the
cells was about 80-83% as it was checked by a his-
tochemical test for A®, 3B-hydroxysteroid dehydro-
genase (A°, 3B-HSD) activity. Viability of the cells
assessed by trypan blue exclusion test was <94 %.
Purified Leydig cells (0.5x10° cells/well) were plat-
ed in 24-well-culture dishes (Nunc, Kalmstrup,
Denmark), cultured for 48 hours at 34°C in a
humidified atmosphere of 5% CO: in air. The cells
were cultured with 1.25 TU/mL hCG (human chori-
onic gonadotropin, Pregnyl, Organon) or without
during the entire culture period. The culture media
were changed every other day, collected, frozen, and
stored at -20° for hormone determinations. For
morphology and immunocytochemistry each well
was closed with a round glass coverslip of appropri-
ate diameter (13 mm; Menzel-Glaser, Braun-
schweig, Germany). At the end of culture period the
coverslips were removed and the Leydig cell cul-
tures were fixed with absolute methanol and
stained with May-Griinwald Giemsa (M-GG) dyes.
For immunohistochemistry the cultured cells were
fixed with 2% formaldehyde freshly prepared from
paraformaldehyde and permeabilized with 0.1%
Triton X-100 in Tris-buffered saline (TBS; 0.05 M



Tris-HCI plus 0.15 M NaCl, pH 7.6) as described
previously (Bilinska and Litwin, 1995).

To calculate the percentage of multinucleate cells
in both stimulated and unstimulated Leydig cell
cultures 1x100 Leydig cells in each culture were
counted. Results of 4 separate measurements for
each culture were expressed as mean + SD.

Immunocytochemistry

Cultured Leydig cells were processed for the visu-
alization of luteinizing hormone receptor (LHR)
using a polyclonal rabbit antibody against LHR
(1:100; BIOTREND Chemikalien GmbH, Kaéln,
Germany) (Kopera et al., 2008). Next, biotinylated
secondary antibody, goat anti-rabbit IgG (1: 500;
Vector, Burlingame CA, USA) was applied. Finally,
avidin-biotinylated horseradish peroxidase complex
(ABC/HRP; 1:100; Dako, Glostrup, Denmark) was
used. The color reaction was developed by means of
Stable DAB (Research Genetics, Inc., Huntsville
AL, USA) for 3-4 min. For negative control, Leydig
cell cultures were incubated in the presence of irrel-
evant IgGs instead of primary antibody. The cells
were examined with a Leica DMR microscope
(Leica Microsystems, GmBH Wetzlar, Wetzlar
Germany) using Nomarski interference contrast. In
some specimens fluorescein isothiocyanate (FITC)-
conjugated IgG (1:80; Sigma Chemical Co. St
Louis MO, USA) was applied instead of biotinylat-
ed goat anti-rabbit IgG and the cells were examined
with a laser confocal microscope (LSM 510
META, Axiovert 200M, ConfoCor 3; Carl Zeiss
MicroImaging GmbH, Jena Germany).

The second part of Leydig cell cultures were
stained with an anti-B tubulin rabbit polyclonal
antibody (1:160; Sigma Chemical Co. St Louis
MO, USA) followed by FITC-conjugated IgGs as
the secondary antibody (1:80; Sigma) for labeling
microtubules. Additionally, some cultures were
stained with rhodaminyl-phalloidin (a gift from
Professor T. Wieland, Heidelberg, Germany) for
labeling F-actin and DAPI (Sigma) as one of the
most widely used nuclear counterstains for nuclei.
(Figure 1 0-P). For selective staining of mitochon-
dria in living Leydig cells Mito Tracker® Red
CMXRos probe was used (Molecular Probes,
Eugene OR, USA) (Kotula et al., 2001). Then, the
cells were fixed, permeabilized (as above), stained
with FITC-phalloidin for F-actin (Molecular
Probes) and DAPI for labeling nuclei. After each
step in all the procedures, cells were carefully
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rinsed with Tris-buffered saline (TBS; 0.05 M Tris-
HCI plus 0.15 M NaCl, pH 7.6); antibodies were
also diluted in TBS buffer.

Testosterone measurement

Leydig cell culture media were analyzed for
testosterone content using radioimmunological
technique as described in detail (Kotula-Balak et
al., 2004b). It was determined using [1,2,6,7,°H1-
testosterone (The Radiochemical Centre, Nycomed
Amersham, Buckinghamshire, England), specific
activity, 81.0 Ci/mmol, as tracer and an antibody
raised in rabbit against testosterone-3-o-carboxy
methylo-oxime-bovine serum albumin (BSA). The
lower limit of sensitivity of the assay was in the
order of 5 pg/tube. Coefficients of variation within
and between assays were 7.2% and 9.6%, respec-
tively. All samples were assayed in duplicates from
4 separate experiments. Testosterone levels are
expressed in ng/10° cells/24h. Statistical evaluation
of the data included one-way analysis of variance
(with the significance level at p<0.05) and the
Duncan's multiple range test.

Results

Morphology

On the basis of light microscopic examination all
Leydig cells growing in a 72-hour-monolayer sys-
tem required an initial 24-h culture period to
attach to the glass (Figure 1 A-B) and next 24h in
culture to form a monolayer (Figure 1 D-E). Leydig
cells were either epithelioid in shape with abundant
cytoplasm (Figure 1 B, D-E) or slightly elongated
(Figure 1 B-C, F). Under the influence of hCG
Leydig cells had a more regular multilateral shape
(Figure 1 D-F). The cells from unstimulated cul-
tures became fibroblast-like after a further culture
period (72 h).This effect was sporadically observed
in hCG-stimulated cultures (Figure 1 C, F).
Interestingly, multinucleate cells ranged from 2-10
nuclei occurred in both hormonally stimulated cul-
tures and unstimulated ones (Figure 1 B-F). The
percentage of multinucleate cells is given in Table 1.

Immunocytochemical analysis

Using both Nomarski interference contrast and
fine immunofluorescence analysis the positive
immunostaining for LHR was localized at the cell
plasma membrane level (Figure 1 G-L) of 24-and
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48-hour Leydig cell cultures. The intensity of the
staining was slightly stronger in hCG-stimulated
cultures than in control ones (Figure 1 I-J, L).
Irrespective of the number of Leydig cell nuclei,
multinucleate cells were also positively stained for
LHR (Figure 1 H, J, an insert in H). By 72 hour in
culture Leydig cells displayed very weak staining
for LHR or were immunonegative (not shown).
There was no immunostaining for LHR when the
primary antibody was replaced by normal goat
serum (an insert in Figure 1 J). Typical distribution
of microtubules (Figure 1 M-N) and microfila-
ments (Figure 1 0-P) was noticed irrespective of
the number of nuclei as shown by immunofluores-
cence and DAPI, one of the most widely used
nuclear counterstains (Figure 1 0-P). Sporadically,
in the multinucleate cells stained for microtubules,
nuclei appeared to be positively stained (Figure 1
N). In Leydig cells labeled with MitoTtracker Red
CMXRos an abundance of mitochondria was
observed in the cell cytoplasm in both mononuclear
and multinucleate cells (Figure 1 P).

Radioimmunological analysis

Radioimmunological analysis of testosterone lev-
els revealed differences between testosterone secre-
tion by hCG-stimulated and unstimulated Leydig
cells. Human Leydig cells of unstimulated cultures
secreted a lower amount of testosterone than
Leydig cells of hCG-stimulated cultures (p<0.05).
Moreover, the capability of hCG-stimulated and
unstimulated Leydig cells in vitro to secrete testos-
terone diminished during the culture period.
Differences were statistically significant at p<0.05
level (Table 2).

Discussion

Due to the rare availability of human material,
the testis of rodents has long been utilized in stud-
ies on testicular structure and biosynthesis of
androgens by Leydig cells (Preslock, 1980; Mather
et al., 1981; Zirkin et al., 1997; Svechnikov et al.,
2001). There are several reports describing func-
tional morphology of human Leydig cells in vivo,
including studies on fetal, pre- and postpubertal
testes (Nistal et al., 1986a; Makabe et al., 1995;
Prince, 1990; Carreau, 1996; Chen et al., 1996).
Chemes et al. (1992) isolated human Leydig cell
mesenchymal precursors to show the capacity of
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Table 1. The percentage of multinucleate Leydig cells in unstim-
ulated and hCG-stimulated cultures. Data are presented as the
mean * SD (n = 4).

48h-Leydig cell cultures Percentage of multinucleate Leydig cells

(n=4) 2-4 nuclei 5-7 nuclei 8-10 nuclei
Unstimulated cells 13.75+0.96 6.75+0.96 3.25+0.50
hCG-stimulated cells 13.75+2.22 6.50+1.29 3.00+0.82

Table 2. Testosterone secretion by human Leydig cells in vitro.
Data are presented as the mean + SEM (n=4). The significance
level was considered to be p<0.05. Means with the different let-
ters (A, B) are statistically different (hCG-stimulated versus
unstimulated cultures), whereas means with the different let-
ters (a, b, c¢) within the row are statistically different between
each of the time points of culture.

Testosterone secretion by human Leydig cells in vitro
[ng/10° cells/24h + SEM]

Cell cultures (n=4) 24-hour 48-hour 72-hour
Unstimulated cells 5.76+0.66" 4.29+0.82* 0.68+0.16*
hCG-stimulated cells 9.83+1.18% 6.85£1.03% 0.84+0.18*

testosterone secretion and responsiveness to hCG of
mesenchymal cells isolated from patients with
androgen insensitivity syndrome. To date, however,
there are only few data on morphology and function
of human Leydig cells growing in a primary culture
(Maillard et al., 1994).

In our in vitro study, using both immunocyto-
chemistry and fine immunofluorescence analysis,
the positive staining for LHR was demonstrated at
the cell plasma membrane level of the 24-and 48
hour-cell cultures. Very often, the staining in individ-
ual Leydig cells of the same culture varied in its
intensity that could reflect a functional heterogene-
ity of Leydig cells in vitro as reported previously in
Leydig cells of rodent testes (Kotula-Balak et al.,
2005; 2007). By 72 hours in culture Leydig cells
displayed very weak staining for LHR or were
immunonegative, suggesting that during culture the
cells become hypofunctional. Perhaps the culture
behavior could potentially reflect the in vivo situa-
tion, since it is well known that the presence of LHR
is needed for a proper functioning of Leydig cells.
Morphologically, hCG-stimulated cells appeared to
be more regular in shape compared with the cells
from unstimulated cultures. Interestingly, in Leydig
cell population we observed multinucleate Leydig
cells (23,20% and 22.80%) in both hCG-stimulat-
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Figure 1. (A-P) Human Leydig cells in vitro. Bars = 20 pm. Morphology of M-GG stained Leydig cells in 24-hour-culture (A, D), 48-hour-cul-
ture (B, E), and 72-hour-culture (C, F). (A, B, C) unstimulated cultures. (D, E, F) hCG- stimulated cultures. Note the appearance of multi-
nucleate cells in both culture conditions and during entire culture period (arrows). Inmunostaining for LHR in 48-hour-old Leydig cells (G-
L). Using Nomarski interference contrast (G-J) and fine immunofluorescence analysis the positive staining for LHR at the cell plasma mem-
brane level was observed (K-L). Note a stronger intensity of the staining in hCG-stimulated cells (H-J, L) compared with that of unstimu-
lated cells (G, an insert in H, K). Irrespective of the number of Leydig cell nuclei, multinucleate cells always positively stained for LHR
(arrows). No staining for LHR observed when the primary antibody was omitted (an insert in J). Typical distribution of microtubules (M-N)
and microfilaments (0-P) whatever the number of nuclei. Sporadically, after hCG stimulation, nuclei were positively stained for micro-
tubules (arrow) (N). In Leydig cells labeled with MitoTtracker Red CMXRos an abundance of mitochondria was observed (arrow) (P).
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ed and unstimulated cultures, respectively, what
indicates that the formation of multinucleate cells
is independent of hormonal stimulation in vitro.
Multinucleate cells were found functionally active
since they expressed LH receptors for the first two
days of culture as did mononuclear Leydig cells. The
existence of multinucleate Leydig cells in human
testes has been a well known feature, however there
are no data demonstrating the presence of multin-
ucleate cells in culture. Schulze (1984) and Nistal
et al. (1986b) described the presence of bi- or tri-
nucleate Leydig cells as common in human testicu-
lar specimens. Using the PAP method the group of
Nistal demonstrated functional activity of multinu-
cleate Leydig cells in vivo. They reported a marked
increase in the number of multinucleate Leydig
cells with age, especially between the 4th to the 6th
decade of life. In our study the testes were removed
from elder than sixty-year-old patients, therefore it
seems possible that the age of patients was a main
cause of multinucleate cell appearance in vitro.
Amat et al. (1986) provided ultrastructural evi-
dence of mitosis in adult human cells suggesting
that mitotic Leydig cells may contribute either to
an increase in the number of Leydig cells or to the
formation of multinucleate Leydig cells when
karyokinesis without cytokinesis occurs. Multi-
nuclearity of Leydig cells in vitro is difficult to dis-
cuss, however it is likely that it protects from
effects of DNA damage. Multinucleate Leydig cells
have also been observed in testicular disorders such
as Klinefelter’s syndrome and varicocele (Kotula-
Balak et al., 1994a; Aragona et al., 1994).

Using a fluorescent mitochondrial marker we
have shown an abundance of mitochondria in
Leydig cells in vitro independently of the number of
cell nuclei. Numerous mitochondria indicate func-
tionally active cells as shown in mouse Leydig cells
in vitro (Bilinska 1994; Kotula-Balak et al., 2001).
In earlier microscopic study at the ultrascructural
level Chemes and co-workers (1992) reported that
human Leydig cells possess an abundant smooth
endoplasmic reticulum and steroid-type mitochon-
dria. Of importance, Prince (1999) in his thorough
study described tubulolamellar morphology of the
mitochondrial cristae of human Leydig cells sug-
gesting that the diversity of form of the cristae cor-
relates structure and function in the process of
steroidogenesis. The involvement of microtubules
and microfilaments in steroidogenesis has been pre-
viously demonstrated in rodent Leydig cells in vitro
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(Bilinska, 1989; Bilinska et al., 1997; 1999);
therefore typical filament pattern in almost all
human Leydig cells might reflect a normal func-
tional state of the cultured cells.

Radioimmunological measurement of testos-
terone levels in human Leydig cells revealed a high
testosterone secretion by the cells during the first
48 hour in culture. Moreover, it was significantly
higher in the hCG-stimulated cultures compared
with unstimulated ones, confirming several reports
on the animal and human models (Simpson et al.,
1987; Chemes et al., 1992; Maillard et al., 1994;
Rivarola et al., 1995). After the next 24 hour in
culture testosterone concentrations and the
response to hCG stimulation of Leydig cells were
very low, suggesting that deficits in individual
Leydig cells may explain the age-related reductions
in serum testosterone. This is also in agreement
with earlier reports demonstrating that Leydig cells
in primary culture rapidly undergo dedifferentiation
(Purvis et al.,, 1978; Mather et al., 1981;
Klinefelter and Ewing 1989; Maillard et al., 1994).
However, the enhancement of long-term testos-
terone secretion by human Leydig cells when co-
cultured with human Sertoli cells has been
observed by the group of Saez (Lejeune et al,
1998). According to the authors, in humans, as in
other species, Sertoli cells increase Leydig cell
steroidogenic activity and a gonadotrophin FSH
enhances the effect of Sertoli cells on Leydig cells.
Additionally, a clear-cut response of cANMP to an
acute hCG stimulation has been demonstrated by
this group for both Leydig cells cultured alone and
co-cultured with Sertoli cells. Based on reports to
date on responsiveness to hCG of rat and human
Leydig cells in vitro it may be concluded that the
function of human Leydig cells is more similar to
that of the rat than thought previously.

Finally, it can be added that culture of purified
cell populations in defined media is often preferred
to in vivo studies for the investigation of specialized
cell functions as shown in the present studly.
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