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Abstract

Muscleblind-like 1 (MBNL1) is an alterna-
tive splicing factor involved in postnatal devel-
opment of skeletal muscles and heart in
humans and mice, and its deregulation is
known to be pivotal in the onset and develop-
ment of myotonic dystrophy (DM). In fact, in
DM patients this protein is ectopically
sequestered into intranuclear foci, thus com-
promising the regulation of the alternative
splicing of several genes. However, despite the
numerous biochemical and molecular studies,
scarce attention has been paid to the intranu-
clear location of MBNL1 outside the foci,
although previous data demonstrated that in
DM patients various splicing and cleavage fac-
tors undergo an abnormal intranuclear distri-
bution suggestive of impaired RNA processing.
Interestingly, these nuclear alterations strong-
ly remind those observed in sarcopenia i.e., the
loss of muscle mass and function which physi-
ologically occurs during ageing. On this basis,
in the present investigation the ultrastructural
localization of MBNL1 was analyzed in the
myonuclei of skeletal muscles from healthy
and DM patients as well as from adult and old
(sarcopenic) mice, in the attempt to elucidate
possible changes in its distribution and
amount. Our data demonstrate that in both
dystrophic and sarcopenic muscles MBNL1
undergoes intranuclear relocation, accumulat-
ing in its usual functional sites but also ectopi-
cally moving to domains which are usually
devoid of this protein in healthy adults. This
accumulation/delocalization could contribute

to hamper the functionality of the whole splic-
ing machinery, leading to a lower nuclear
metabolic activity and, consequently, to a less
efficient protein synthesis. Moreover, the sim-
ilar nuclear alterations found in DM and sar-
copenia may account for the similar muscle
tissue features (myofibre atrophy, fibre size
variability and centrally located nuclei), and, in
general, for the aging-reminiscent phenotype
observed in DM patients. 

Introduction

The Muscleblind-like (MBNL) family of pro-
teins is a class of tissue-specific regulators of
developmentally programmed alternative splic-
ing;1-3 a few studies have also proposed a role
for these proteins in translational control
through a modulation of RNA stability.4,5 In
eukaryotic cells, gene primary transcripts (pre-
mRNAs) undergo extensive modifications
before generating mature mRNA to be export-
ed to the cytoplasm, and splicing represents a
key co- and post-transcriptional step. In
Vertebrates, most of the pre-mRNAs are alter-
natively spliced, allowing the synthesis of dif-
ferent protein isoforms from the transcripts of
a single gene.6 Defects in alternative splicing
processes can contribute to pathogenesis, as
demonstrated for a growing number of genetic
diseases, including myotonic dystrophies.7

Myotonic dystrophies (DMs) are autosomal
dominant disorders characterised by a variety
of multisystemic features among which myofi-
bre dystrophy with increased number of cen-
trally located or clumped nuclei,8 myotonia
(muscle hyperexcitability), dilated cardiomy-
opathy, defects in cardiac conduction,9 insulin-
resistance, cataracts,10 and disease-specific
serological abnormalities.11-13 Two forms of DM
have been described: DM1-Steinert’s disease
(OMIM 160900), caused by an expanded
(CTG)n nucleotide sequence in the 3’ untrans-
lated region of the Dystrophia Myotonic
Protein Kinase (DMPK) gene (OMIM 605377)
on chromosome 19q13;14-16 and DM2 (OMIM
602688), caused by the expansion of the
tetranucleotidic repeat (CCTG)n in the first
intron of the Zinc Finger Protein (ZNF9 gene,
now called CNBP) (OMIM 116955)17,18 on chro-
mosome 3q21.19

Both CUG- and CCUG-containing transcripts
are retained in the cell nucleus and accumu-
late in RNA- and protein-containing aggre-
gates called foci18 where MBNL1, 2 and 3 pro-
teins can be sequestered,20 thus compromising
the regulation of alternative splicing.21 In par-
ticular, MBNL1 (which directly binds both CUG
and CCUG RNA repeats,22,23 is involved in the
postnatal development of skeletal muscles and
heart in humans and mice.24-26

In the pathogenesis of DMs, aberrant regu-
lation of the alternative splicing events has
been found for more than 30 genes.27

Importantly, MBNL1 directly regulates the
alternative splicing of the genes coding for car-
diac troponin T (cTNT),1,28 myomesin 1
(MYOM1),29 non muscle myosin heavy-chain
(MYH14),30 bridging integrator-1 (BIN1,
required for the biogenesis of muscle T
tubules),31 skeletal muscle chloride channel
(CLCN1),11,32 Ca(V)1.1 (a calcium channel that
controls skeletal muscle excitation-contraction
coupling),33 and insulin receptor (IR).1,34 These
misregulated post-transcriptional processes
may account for several of the multiple symp-
toms observed in DM patients, thus making
MBNL1 one of the best examples of regulatory
splicing factors involved in the onset and
development of the disease symptoms.
However, despite the numerous biochemical
and molecular studies on the splicing activity
of MBNL1 and its sequestration in the DM foci,
scarce attention has so far been paid to its
intranuclear distribution pattern outside the
foci.35 It has been recently found that the
ribonucleoprotein (RNP)-containing struc-
tures, i.e. perichromatin fibrils (PF), perichro-
matin granules (PG) and interchromatin gran-
ules (IG)36 as well as the molecular factors
responsible for pre-mRNA transcription and
maturation undergo massive rearrangement
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in the nuclei of skeletal muscles from DM1 and
DM2 patients:37 the precise intranuclear loca-
tion of these RNP constituents is an essential
prerequisite for pre-mRNA synthesis and pro-
cessing to correctly take place, and they are
considered as highly sensitive markers of
nuclear activity.38 Interestingly, the abnormal
RNP distribution in DM muscle cells suggests
an impairment of pre-mRNA processing37 and
strongly reminds the nuclear alterations typi-
cal of sarcopenia39-41 i.e., the loss of muscle
mass and function which physiologically occur
during ageing42 and is characterised by myofi-
bre atrophy, fibre size variability and centrally
located nuclei.43 This evidence allowed to
hypothesize that common nuclear mecha-
nisms might be responsible for skeletal muscle
wasting in sarcopenia and in different muscu-
lar pathologies.44-46

On the bases of this rationale, in the present
work the nuclear localization of the key alter-
native splicing factor MBNL1 was analyzed in
skeletal muscles from healthy subjects and
myotonic dystrophy type 1 and 2 patients as
well as from adult and old (sarcopenic) mice;
immunoelectron microscopy and biochemistry
were used in the attempt to elucidate possible
changes in the distribution and amount of
MBNL1.

Materials and Methods

Skeletal muscle sample processing
The biopsies were taken, under sterile con-

ditions, from the biceps brachii muscles of
adult patients affected by DM1 (three subjects
aged 18-46) or DM2 (three subjects aged 53-
60) as well as of three healthy donors (aged 18-
36), after informed consent; the procedures
followed were in accordance with the ethical
standards of the responsible committee on
human experimentation of the IRCCS
Policlinico San Donato. The patients affected
by DM2 were the oldest ones, due to the late
onset of the disease symptoms, while the
patients affected by DM1 are characterised by
an earlier onset of muscle dystrophy; however,
all the subjects were in the adulthood range,
thus excluding possible age-related changes in
nuclear features. The histological diagnosis
was performed on serial sections processed for
routine histological or histochemical staining,
based on the clinical criteria set by the
International Consortium for Myotonic
Dystrophies.47 Immediately after removal, the
biopsies were cut into small fragments and
fixed by immersion in 4% paraformaldehyde
and 0.5% glutaraldehyde in 0.1 M phosphate
buffer, pH 7.4, for 2 h at 4°C. Some other mus-
cle samples were frozen in cooled isopentane

and preserved in liquid nitrogen.
Six adult (9 months of age) and six old (28

months of age) male Balb-c mice were bred
under controlled environmental conditions
with a 12 h light/dark cycle, and fed ad libitum
on a standard commercial chow. The experi-
mental protocols comply with the guidelines of
the Italian Ministry of Health as well as with
internationally recognized guidelines. The
mice were deeply anaesthetised with pento-
barbital (50 mg/Kg i.p.). Six mice (three per
age group) were then perfused via the ascend-
ing aorta with a brief prewash of 0.09% NaCl
solution followed by 300 mL of a fixative solu-
tion containing 4% paraformaldehyde and
0.5% glutaraldehyde in 0.1 M phosphate buffer,
pH 7.4 at 4°C. Quadriceps femoris muscles
were quickly removed and placed in the same
fixative solution for 2 h at 4°C. This muscle
was chosen because it is mainly composed by
fast type II fibers, that are prone to sarcope-
nia.48 After fixation, all muscle samples were
washed in phosphate buffer saline (PBS),
deepen in 0.5 M NH4Cl in PBS for 45 min to
block free aldehydes, dehydrated with ethanol
and embedded in LR White resin. Ultrathin
sections were collected on Formvar-carbon
coated nickel grids and used for the immuno-
cytochemical analyses.  In addition, for bio-
chemical analyses six mice (three per age
group) were killed after ether anaesthesia, and
the quadriceps femoris muscles were dissect-
ed, immediately frozen in cooled isopentane
and preserved in liquid nitrogen.

Immunogold labelling
Sections were floated for 3 min on normal

goat serum diluted 1:100 in PBS and then incu-
bated for 17 h at 4°C with a rabbit polyclonal
anti-MBNL1 antibody (kind gift of Prof. C.A.
Thornton24) diluted 1:50 with PBS containing
0.1% bovine serum albumin (Fluka) and 0.05%
Tween 20. After rinsing, sections were floated
on normal goat serum, and then allowed to
react for 30 min at room temperature with a 12
nm gold-conjugated goat anti-rabbit secondary
antibody (Jackson ImmunoResearch Lab., Inc.,
West Grove, PA, USA) diluted 1:10 in PBS.
Finally, the sections were rinsed and air-dried.
As controls, some grids were incubated with-
out the primary antibody and then processed
as described above. To reduce chromatin con-
trast and selectively reveal nuclear RNP con-
stituents, the sections were treated according
to the EDTA method,49 and then observed in a
Philips Morgagni TEM operating at 80kV and
equipped with a Megaview II camera for digital
image acquisition. 

Quantitative assessment of the immunola-
belling was carried out by estimating the gold
particle density over different nuclear domains
in samples treated in the same run. Based on
the widely accepted nuclear nomenclature,36

we considered the two major compartments,
i.e. the nucleolus and the nucleoplasm (con-
sisting of chromatin areas and the interchro-
matin space); it should be underlined that in
DM samples the foci were excluded from the
nucleoplasmic area and measured separately.
In addition, we considered as nuclear domains
the IG clusters and, in order to get an estimate
of the surface covered by PF (that is hardly
assessable by direct morphometry), we defined
a domain called interchromatin space minus
IG, which was obtained by subtracting the con-
densed chromatin plus IG areas from the whole
nucleoplasmic area.50,51 The surface areas of
the different domains were measured in fif-
teen randomly selected electron micrographs
(x22,000) of myonuclei from each patient or
mouse using a computerized image analysis
system (AnalySIS Image processing, Soft
Imaging System GmbH, Muenster, Germany).
Background evaluation was carried out on
resin (in the areas devoid of tissue) of
immunolabelled samples as well as on the tis-
sue of control samples. Gold particles present
over the domains were counted, and the
labelling density was expressed as the number
of gold particles/μm2. For each analyzed vari-
able, the Kolmogorov-Smirnov two-sample test
was performed in order to verify the hypothesis
of identical distributions among animals of
each group. The data for each variable were
then pooled according to the experimental
groups, and the mean ± standard error of the
mean (SE) was calculated. Statistical analysis
of the results was performed by the one-way
ANOVA test. Statistical significance was set at
P≤0.05.

Western blotting analysis
For protein extraction, skeletal muscles

were deeped for 20 min in ice in cold lysis
buffer (1 mL for 100 mg tissue) containing 50
mM Tris-HCl, pH 7.6, 150 mM NaCl, 1%
Nonidet P40, 0.25% Na-deoxycolate, 0.1%
Sodium Dodecyl Sulfate (SDS), protease
inhibitor cocktail (Sigma-Aldrich), in distiller
water. Then, the samples were homogenised
and centrifuged at 13,000 rpm for 15 min at
4°C, the supernatants were collected, and pro-
teins were quantified by the Bradford method.
Twenty µg of proteins per sample were loaded
and separated by electrophoresis on 12% SDS-
polyacrylamide gels, and transferred onto
nitrocellulose membranes (Amersham Bio -
sciences, Inc., Piscataway, NJ, USA). Non-spe-
cific bindings were blocked by incubation in
5% non-fat dry milk in PBS containing 0.2 %
Tween-20 for 30 min at room temperature.
After washing, the membranes were incubated
overnight at 4°C with the rabbit polyclonal
anti-MBNL1 antibody diluted 1:5,000 in PBS
and 0.2% Tween 20. The membranes were then
incubated for 1 h at room temperature with a
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goat anti-rabbit HRP-conjugated secondary
antibody, diluted 1:1,000 in PBS and 0.2 %
Tween 20 (Abcam, Cambridge, UK). The
immunocomplexes were finally revealed by the
chemiluminescence reagent (ECL; Millipore,
Billerica, MA, USA). Mouse monoclonal anti-
bodies against actin (1:3,000, Sigma-Aldrich,
St Louis, MO, USA) or glyceraldehyde-3-phos-
phate dehydrogenase (GADPH, routinely used
in our laboratories as a standard for human
samples) (Biogenesis, 1:10,000) were used as
loading controls and revealed with a goat anti-
mouse HRP-conjugated secondary antibody,
diluted 1:3,000 in PBS and 0.2 % Tween 20
(Abcam). The mean ± standard error of the

mean (SE) was calculated, and statistical
analysis was performed by the one-way ANOVA
test. Statistical significance was set at P≤0.05.

Results

Immunogold labelling
In the myonuclei of healthy human subjects

(Figure 1a) and adult mice (Figure 2a) most of
the anti-MBNL1 immunolabelling specifically
occurred on PF, and only few gold grains were
rarely observed on IG. In DM1 and DM2

patients (Figure 1b,c) as well as in old mice
(Figure 2b), the immunolabelling was present
on PF and frequently also on IG. Moreover, in
DM patients the signal was also found to accu-
mulate in roundish domains (Figure 1c) corre-
sponding to the foci described at fluorescence
microscopy after RNA in situ hybridization or
MBNL1 immuonolabelling.18,21,35,52 The myonu-
clei we observed in DM patients or in old mice
always showed the described reorganization of
the RNP components, thus suggesting that
such an alteration did affect all the myofibre
nuclei. The gold labelling found on condensed
chromatin and nucleoli was always negligible
(Figures 1 and 2).

Original Paper

Figure 1. Myonuclei from healthy (a), DM1 (b) and DM2 (c)
patients; anti-MBNL1 antibody. In healthy subjects (a), perichro-
matin fibrils (arrows) are specifically labelled, while the interchro-
matin granules (IG) are devoid of signal. In patients affected by
DM1 (b) and DM2 (c), MBNL1 occurs both on perichromatin
fibrils (arrows) and on interchromatin granule clusters (IG). In
the inset (c) a roundish domain (thick arrow) corresponding to a
focus shows a strong labelling for MBNL1. Condensed chromatin
(Ch), nucleoli (Nu) and perichromatin granules (arrowheads) are
not labelled. Scale bars: 500 nm.

Figure 2. Myonuclei from adult (a) and old (b) mice; anti-
MBNL1 antibody. In adult animals (a), MBNL1 exclusively
occurs on perichromatin fibrils (arrows), while the interchro-
matin granules (IG) are devoid of signal. Conversely, in old mice
(b), both perichromatin fibrils (arrows) and interchromatin gran-
ule (IG) are labelled. Condensed chromatin (Ch), nucleoli (Nu)
and perichromatin granules (arrowheads) are not labelled. Scale
bars: 500 nm.

Figure 3. The histograms show the mean values±SE of the anti-
MBNL1 labelling densities (gold grains/μm2) over different
myonuclear compartments of healthy, DM1 and DM2 patients.
Columns identified by asterisks are significantly different from
each other.
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Morphometric analyses demonstrated that
the percentage of condensed chromatin was
higher in the myonuclei of DM than of healthy
subjects (means±SE values: healthy=24.40±
0.84%; DM1=35.98±0.78%; DM2=38.66±
0.76%); similar results were found for the
mouse myonuclei with a larger fraction of con-
densed chromatin in old than in adult animals
(means±SE values: adult=24.25±1.17%;
old=36.06±1.80%).41 The gold immunola-
belling for MBNL1 was quantitatively assessed
in the nucleolus, the nucleoplasm (excluding
the DM foci), the interchromatin space minus
IG, the IG clusters and the DM foci. In all sam-
ples the labelling on the nucleolus was
extremely low (mean±SE: 0.008±0.004 gold
particles/μm2), similar to the background level
(see below).

In human subjects (Figure 3) the labelling
on the nucleoplasm was significantly lower in
DM than in healthy patients; conversely, the
immunogold values found on the interchro-
matin space minus IG or the IG clusters were
significantly higher in DM patients in compar-
ison to healthy subjects. In the mice, nucleo-
plasmic immunolabelling for MBNL1 (Figure
4) was not statistically different in adult and
old animals (although the difference was close
to the significance value, with P=0.06), where-
as the values found on the interchromatin
space minus IG and IG clusters were signifi-
cantly higher in old than in adult individuals.
In DM foci the mean ± SE values of immunola-
belling were 209.41±43.46 gold particles/μm2.
Background values were negligible
(0.006±0.003 gold particles/μm2) in all
immunolabelling experiments.

Western blotting analysis
The western blot analysis showed that in

both DM patients and old mice skeletal muscle
biopsies an increase of MBNL1 protein occurs,
compared to healthy humans and adult mice,

respectively (Figure 5a,b). This increase was
found to be statistically significant by MBNL1
quantification normalized against the refer-
ence proteins (Figure 5 c,d). No statistically
significant difference between DM1 and DM2
patients was found. 

Discussion

In eukaryotic cells, nuclear RNPs are struc-
tural elements of the transcription and splicing
machinery, and are always organized as mor-
phologically recognizable structures called PF,
IG and PG.36 PF, in particular, are the sites of
pre-mRNA transcription and co-transcriptional
splicing as they contain nascent tran-
scripts,53,54 hnRNPs, snRNPs,53 the non-snRNP
SC35 splicing factor,55 and 3’ end process-
ing.56,57 IG are known to represent storage,
assembly and recycling sites for transcription
and splicing factors,58,59 while their role in
mRNA export remains somewhat controver-
sial.60,61 PG act as both vectors and storage sites
of already spliced pre-mRNA.36 The precise
intranuclear localization of all these structures
as well as their proper protein content are nec-

essary for the correct progress of mRNA matu-
ration,36,58 while their structural or composi-
tional reorganization is a distinctive sign of
impairment in this process.38,62 Our findings
demonstrate that, in skeletal myonuclei of both
healthy adult humans and mice, MBNL1 usual-
ly occurs on PF, where it plays its post-tran-
scriptional functions, and does not accumulate
in any other nuclear domain. However, in mus-
cles affected by DM or sarcopenia, MBNL1 is
distributed not only on PF but frequently also
on IG clusters. Therefore, in both DM and age-
ing, MBNL1 undergoes intranuclear relocation
and moves to domains which are usually
devoid of this protein in healthy adults. It is
worth noting that an increase of transcription
factors in IG clusters has been shown to occur
during ageing in hepatocytes and neu-
rons;50,51,63 similarly, an accumulation of splic-
ing factors (hnRNPs, snRNPs and SC35) in IG
has been reported in different tissues under
physiologically hypometabolic conditions.64 

As expected, MBNL1 protein especially accu-
mulates in the roundish domains correspon-
ding to the peculiar foci of DM patients.18,21,35,52

These RNP-containing aggregates are a typical
marker of the DM genetic alterations, and have
never been found in the myonuclei of healthy
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Figure 4. The histograms show the mean values±SE of the anti-
MBNL1 labelling densities (gold grains/μm2) over different
myonuclear compartments of adult and old mice. Asterisks indi-
cate statistically significant difference.

Figure 5. Western blot analysis of the expression of MBNL1 and
reference proteins in all healthy and DM patients (a) and in all
adult and old mice (b). The histograms show the mean intensity
level ± SE of MBNL1 protein, after normalization with the actin
or GADPH intensity, in healthy and DM patients (c), and in
adult and old mice (d). Asterisks indicate values significantly dif-
ferent from each other. No statistically significant difference was
found between DM1 and DM2 patients.
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adult or old individuals. However, recent
results demonstrated that these foci increase
in size and accumulate larger amounts of
MBNL1 and RNA repeats in the myonuclei of
DM2 patients during ageing as well as in
senescing non-dividing cells in culture.65 The
quantitative study of immunolabelling adds
interesting data on the reorganization of
MBNL1 in the subnuclear domains in both dys-
trophic and sarcopenic muscles. In DM
patients, the nucleoplasmic MBNL1 immunola-
belling is significantly reduced in comparison
to healthy subjects, consistent with the recruit-
ment of the protein into the foci that leads to
the depletion of free MBNL1 from the nucleo-
plasm.24 However, MBNL1 accumulates in PF
in the myonuclei affected by DM, as demon-
strated by the larger amount of MBNL1 in the
so-called interchromatin space minus IG
domain (where PF are especially abundant),
compared to healthy subjects. In addition, in
DM muscles MBNL1 accumulates also in IG, as
discussed above. This observation is not con-
flicting with the previously described nucleo-
plasmic depletion of MBNL1 in DM myonuclei
observed after fluorescent immunolabelling:24

by this approach, the fluorescent signals were
measured over the whole nucleoplasmic sur-
face, irrespective of their distribution in the
different domains, whereas the ultrastructural
gold immunolabelling allowed to localize the
MBNL1 labelling in the interchromatin space
subcompartments, and to detect the nucleo-
plasmic areas devoid of this protein (i.e., con-
densed chromatin whose amount is signifi-
cantly larger in the myonuclei of both DM1 and
DM2 patients than of healthy subjects).

The amount of the whole nucleoplasmic
MBNL1 immunolabelling was slightly (though
not significantly) higher in old than in adult
mice and, as much as it occurs in DM muscles,
the interchromatin space minus IG and the IG
clusters showed a significant accumulation of
this protein in the nuclei of sarcopenic mus-
cles from old individuals. Again, old myonuclei
contain significantly higher amount of con-
densed chromatin than the adults.37,39 Western
blotting results support the immunohisto-
chemical data, showing a significant increase
in MBNL1 content both in dystrophic muscles
(essentially depending on MBNL1 sequestra-
tion in the foci) and in sarcopenic muscles
(where this mainly relates to the protein accu-
mulation in RNP nuclear constituents). 

Interestingly, it has recently been demon-
strated37 that in skeletal muscle biopsies from
DM1 and DM2 patients, splicing and cleavage
factors accumulate in their intranuclear func-
tional sites (i.e., PF) but also in the IG, while
being massively sequestered in the RNP-con-
taining foci. Similarly, factors involved in pre-
mRNA post-transcriptional processing have
been found to accumulate on PF in the nuclei

of sarcopenic muscles39-41 as well as in other
tissues (e.g., liver, brain) during age-
ing.50,51,63,66,67 As a consequence, the availability
of this essential factor for alternative splicing
would be reduced both in dystrophic and sar-
copenic muscles, thus compromising the syn-
thesis of several protein isoforms.1,11,28-34 More
generally, it could be hypothesised that the
accumulation/delocalization of mRNA process-
ing factors, including MBNL1, could hamper
the functionality of the whole splicing machin-
ery and slow down the intranuclear molecular
trafficking, leading to a lower metabolic activi-
ty of myonuclei, consistent with the reduced
protein synthesis observed in DM1 and DM2
myoblasts,68,69 and the misregulated protein
turnover resulting in a structural imbalance
between protein synthesis and degradation in
aged muscles.70 It is worth noting that
myoblasts from DM2 patients grown in culture
show cell-senescence structural alterations
and impairment of the pre-mRNA maturation
pathways much earlier than the myoblasts
from healthy subjects.71 The skeletal muscle of
DM patients seems therefore to share intrigu-
ing similarities with the muscle from aged
mammals, with special reference to the alter-
ations in the nuclear RNP-containing struc-
tures involved in pre-mRNA transcription and
splicing. These nuclear similarities may
account for the similar muscle tissue pheno-
type (myofibre atrophy, fibre size variability
and centrally located nuclei) and, in general,
for the aging-reminiscent phenotype especial-
ly observed in patients affected by the more
severe DM1 form which shows numerous
degenerative adult-onset disorders (e.g., mus-
cle weakness and atrophy, bilateral ocular
cataracts, type 2 diabetes mellitus, cardiomy-
opathy, testicular atrophy, immune deficien-
cy).72

As a more general remark, the present
results on the subnuclear redistribution of
MBNL1 in DM and in sarcopenic muscles con-
firm and extend previous observations indicat-
ing the reorganization of the nuclear RNP
components as a univocal cytological marker of
muscle cell dysfunctions. Comparative studies
are therefore encouraged in the attempt to
detect common molecular mechanisms at the
basis of skeletal muscle wasting under physio-
logical or pathological conditions.
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