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Abstract 

Formation, aggregation and transmission of
abnormal proteins are common features in
neurodegenerative disorders including
Parkinson’s disease, Alzheimer’s disease, amy-
otrophic lateral sclerosis, and Huntington’s
disease. The mechanisms underlying protein
alterations in neurodegenerative diseases
remain controversial. Novel findings highlight-
ed altered protein clearing systems as common
biochemical pathways which generate protein
misfolding, which in turn causes protein
aggregation and protein spreading. In fact,
proteinaceous aggregates are prone to cell-to-
cell propagation. This is reminiscent of what
happens in prion disorders, where the prion
protein misfolds thus forming aggregates
which spread to neighbouring cells. For this
reason, the term prionoids is currently used to
emphasize how several misfolded proteins are
transmitted in neurodegenerative diseases fol-
lowing this prion-like pattern. Histochemical
techniques including the use of specific anti-
bodies covering both light and electron
microscopy offer a powerful tool to describe
these phenomena and investigate specific
molecular steps. These include: prion like pro-
tein alterations; glycation of prion-like altered
proteins to form advanced glycation end-prod-
ucts (AGEs); mechanisms of extracellular
secretion; interaction of AGEs with specific
receptors placed on neighbouring cells
(RAGEs). The present manuscript comments
on these phenomena aimed to provide a con-
sistent scenario of the available histochemical
approaches to dissect each specific step.

Introduction

The occurrence of protein
aggregates

Neurodegenerative diseases (NDs) are
chronic and progressive conditions which may

affect, separately or in combination, autonom-
ic, motor, sensory, mood and cognitive func-
tions. Apart from juvenile cases, most of which
are genetically determined, these disorders
appear late in life, being characterized by
marked neuronal loss which was traditionally
described as trans-synaptic degeneration.1 At
present, therapeutic strategies aimed at treat-
ing or preventing these disorders are under
intense investigation.

Despite the occurrence of multiple mecha-
nisms to generate cell pathology, the common
feature which represents the starting point of
disease progression is the occurrence of mis-
folded proteins. This point is key also for current
histochemistry which allows detecting early in
the disease process the occurrence of cell
pathology. In fact, various NDs share the pres-
ence of altered protein aggregates within neu-
ronal and non-neuronal cells. These proteins are
expected to misfold, aggregate and propagate to
sustain disease progression. For such a reason,
these NDs are defined as protein misfolding dis-
eases (PMDs) or conformational disorders. For
instance, due to pathological conditions, normal
proteins domain owing an α-helix may misfold
into β-sheet structures whose conformation is
further stabilized by pathobiochemical interac-
tions, leading to the formation of oligomers that
cannot be cleared.2-5

Misfolded proteins are pathological hall-
marks which may be in common with different
disorders or vary in specific diseases. For
instance, α-synuclein aggregates characterize
Parkinson’s disease (PD)6 and other synucle-
inopathies,7,8 whereas TDP43 and SOD1 are typ-
ically found as protein aggregates in amy-
otrophic lateral sclerosis (ALS)9. Huntingtin
aggregates characterize Huntington’s disease,10

whereas β-amyloid and tau are typical of degen-
erative dementia.11 In some cases, the same pro-
tein misfolds and accumulates in multiple dis-
orders, such as TDP-43, which can be found
both in ALS and fronto-temporal dementia.12

This concomitance indicates a continuum of
disease progression9 and occurs more often for
α-synuclein which may be found in a wide
range of disorders. In fact, α-synuclein accumu-
lates in Parkinsonism (including multiple sys-
tem atrophy) but also in ALS13 in Huntington’s
disease10 and in specific forms of degenerative
dementia.11 This poses the α-synuclein detec-
tion as a powerful marker to track neurodegen-
eration. In fact, the mechanisms by which α-
synuclein misfolds, aggregates, propagates and
leads to cell death are intensely investigated.14

The presence of altered α-synuclein in a variety
of disorders is unlikely to be a coincidence but
it rather witnesses for progressive involvement
of different neuronal networks along the course
of neurodegeneration.13,15-17

Histochemical detection of misfolded protein
aggregates through the use of specific and sen-
sitive antibodies allowed, in the last decades,
enormous progress in the diagnosis and nosog-

raphy of NDs. In particular, both light and elec-
tron microscopy, by profiting of sophisticated
technologies to produce and characterize anti-
bodies, provided a fairly disease-specific pattern
of cell pathology. In this way, even in the pres-
ence of neuronal accumulation of α-synuclein,
it is possible to distinguish whether this aggre-
gation follows a Lewy body (LB)-like pattern
(such as in Parkinsonism, where inclusions are
formed by a negative α-synuclein core which is
surrounded by α-synuclein-containing radiat-
ing filaments) or it is characterized by α-synu-
clein-positive neuronal vacuoles (as it occurs in
Huntington’s disease).18 The co-expression of
α-synuclein with other protein aggregates is
typical in specific diseases. This is the case of
co-accumulation of α-synuclein with SOD1 in
ALS,13 co-accumulation of α-synuclein with
huntingtin in Huntington’s disease18 or co-
expression of α-synuclein, parkin and ubiquitin
in PD.19 The cell type in α-synuclein aggregates
is also useful in differential diagnosis. For
instance, α-synuclein accumulates within neu-
ronal cells in PD but also involves glial cells in
multiple system atrophy.20

Protein aggregates are based
upon protein misfolding

Why a given protein aggregates within neu-
rons may depend on several mechanisms which
in turn fall in two main classes: i) altered protein
synthesis; ii) altered protein metabolism. In the
first case, the gene coding for a certain protein is
present in excess21 or it is altered by point muta-
tions.22 In these cases, the nascent protein is
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prone to unfold or misfold.4,5In the case of altered
protein metabolism, normal protein amounts and
normal protein structure associate with altered
protein clearing mechanisms which cannot
remove the protein which accumulates making it
likely to unfold or misfold.

Increased copies of the protein coding gene
are detectable by RT-PCR measuring high
amount of the gene which are paralleled by
increased protein level (detected by SDS-PAGE
immunoblotting). Again, if the gene is mutated,
this can be detected by genetic analysis or the
use of mutation specific antibodies. The occur-
rence of altered protein metabolism relies on two
main protein clearing systems which are effec-
tive in eukaryotic cells, namely the ubiquitin pro-
teasome system (UPS) and the autophagy path-
way. There are now refined guidelines to detect
the efficacy of these pathways and to establish
the specific step which is impaired thus affecting
protein metabolism. When a deficiency in either
UPS or autophagy occurs, the excess of protein
substrates leads to protein misfolding and aggre-
gation.23,24 Immunocytochemistry now provides
the chance to localize the cell compartment trig-
gering protein accumulation by staining the mis-
folded proteins in combination with compart-
ment-specific antibodies. For instance, a defect
in starting the autophagy pathway (critical for
protein clearance) can be visualized in neuronal
cells where misfolded protein is aggregated in
the absence of effective autophagosomes where
LC3-II particles are scarce. At the same time, a
defect in the autophagy pathway can paradoxical-
ly associate with increased amount of LC3-II par-
ticles which are no longer metabolized if a defect
in autophagy progression occurs. If this is the
case, misfolded proteins are stagnant within big
non-progressive autophagosomes. At present,
the search for biochemical and immunohisto-
chemical markers to measure protein clearance
is under intense investigation.25,26 Deficiency in
the clearance of misfolding-prone proteins may
also derive from an excess of misfolded sub-
strate, which even in the presence of normal nas-
cent protein level (no genetic alterations), still
produces misfolded protein aggregates. This may
be due to specific environmental stimuli which
alter protein conformation (oxidizing species,
dopamine-derived quinones; chemical toxins
and many others) beyond the compensatory
increase in the activity of otherwise healthy cell
protein clearing systems. This is the case of
methamphetamine intoxication which increases
the levels of misfolded α-synuclein beyond the
clearing efficacy of the autophagy machinery
thus leading to α-synuclein misfolding and
aggregation.27

What brings to protein
misfolding

When a protein is produced as an altered

structure or it is accumulated at levels which
overcome the ability of protein clearing sys-
tems, the cellular environment leads at vari-
able rate to spontaneous misfolding, which is
based on conformational changes where pro-
tein domains, structured as α-helix, are con-
verted into β-sheet structures. Again, protein
misfolding may derive from additional binding
with specific compounds which promote the
oxidation of SH groups into S-S disulphide
bounds. Moreover, specific sugar residues may
bind to proteins leading to a spontaneous reac-
tion to form a Shiff’s base leading to protein
glycation. In detail, these steps occur as post-
translation modification which may apply both
to normal and mutated proteins, thereby mod-
ifying their structure and conformation thus
producing protein misfolding or unfolding.28

This applies both to prion protein and pri-
onoids, such as SOD-1, β-amyoloid, tau, α-
synuclein, huntingtin,29 and also to TDP43 and
FUS which naturally own a prion-like
domain.30,31 In the case of protein glycation,
this occurs earlier though the formation of
fructosamine which derives from the binding
of a sugar residue, an aldehyde or a ketone to
the amino-group of a given protein.32 Early
steps in glycation follow an equilibrium which
depends on the amount of protein substrates.
Glycation proceeds though the final AGEs
which derive from a cascade of reactions, all
occurring spontaneously. AGEs may also derive
directly from the binding of the proteins to
methylglyoxal, glyoxal and 3-deoxyglucosone.
All AGEs can be identified through immunohis-
tochemical methods by using monoclonal anti-
bodies against specific degradation product
such as carboxymethyllysine, carboxyethylly-
sine, 6-aminoquinolyl-N-hydroxysuccinimidyl
carbamate, and argpyrimidine corresponding
to the most common AGEs epitopes. 

Final AGEs are stable thus making misfold-
ed protein aggregates irreversible and pro-
tease-resistant.33 Therefore, a classic method
used to detect misfolded proteins is based on
pre-treating the sample with proteinase-K
(PK) which destroys soluble proteins but can-
not interact with misfolded protein aggregates,
leaving intact their epitopes. This allows iden-
tifying authentic misfolded variants of pri-
onoids.34 Therefore, the use of PK treatment,
prior to immunocytochemistry, is routinely
applied to remove folded proteins and detect
their misfolded isoforms. The paradigm is rep-
resented by the immunoreactivity against cel-
lular prion protein (PrPc) and PrPsc.35,36 Pre-
treatment with PK is also used to detect unsol-
uble α-synuclein modified as β-sheet
oligomers as it occurs in dopamine (DA)-relat-
ed neurodegenerative conditions or following
the genesis of α-synuclein DA adducts.2,34

Apart from PK, which acts as a protease, the
disruption of the secondary structure can also
be carried out with the denaturing agent sarko-
syl accordingly to Takahashi et al.37 Sarkosyl is
sodium lauroyl sarcosinate, which reacts as an

anionic detergent. This allows disrupting the
strong binding within proteins which are criti-
cal to maintain the secondary structure.38

From an exquisite methodological perspec-
tive, it is worth mentioning potential discrep-
ancies between pre-treatment with sarkosyl
compared with PK. This is likely to depend on
the loss of specific epitopes of the primary
structure following the stronger effects of PK,
whereas sarkosyl is expected to preserve
entirely the amino acid chain of misfolded pro-
teins. Therefore, it is not surprising that in
some instances PK treatment leads to a total
loss of staining, even in the presence of mis-
folded prionoids, whereas sarkosyl provides a
fair antigen preservation. On the other hand,
sarkosyl may lead to less specific results.

What happens to misfolded
proteins

The status of misfolded protein in the form of
AGEs confers to the prionoids the ability to
spread from cell to cell. In fact AGEs can be
expressed at the level of the plasma membrane
from where they are released extracellularly.
The combined histochemistry to detect glycated
protein with the use of prionoid-specific anti-
bodies allows detecting AGE on the plasma
membranes. At the same time, AGEs contained
in the endosomal compartment can merge with
the plasma membrane and being released as
exosomes in the extracellular space.39 The pres-
ence of specific receptor for AGEs, termed
RAGEs, allows binding and entering prionoids
at the level of neighbouring cells. Thus, misfold-
ed proteins can either aggregate and persist in
the original cell or move out to spread the dis-
ease. In the first case, protein aggregation may
seed the formation of neuronal inclusions such
as LB in PD. These inclusions should not be
regarded as static milestones. In fact, if their
detection by light and electron microscopy
allows pathological diagnosis, they also repre-
sent dynamic structures which preserve anti-
gen properties and enzymatic activity. In keep-
ing with this, it is worth mentioning that pro-
tein clearing systems, such as UPS and
autophagy, still persist within neuronal inclu-
sions and own catalytic activity.40,41 By using
advanced techniques of immuno-electron
microscopy it is possible to purify misfolded pro-
tein aggregates (such as α-synuclein-contain-
ing aggregates) from neurons and assess the
presence of specific enzyme belonging to the
UPS or autophagy. This method is based on
magnetic beads which bind to streptavidin and
allow isolating α-synuclein containing struc-
tures. Lenzi et al.41 provided the description of
this technique applied to the field of neurode-
generation. This procedure allows purifying in a
prionoid-specific manner neuronal aggregates.
An alternative technique based on differential
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centrifugation of neuronal pools allows localiz-
ing misfolded protein aggregates within specif-
ic cell compartments (including pathological
compartments such as neuronal inclusions)
where prionoids co-localize with protein clear-
ing enzymes (see electron micrographs in
Figure 1 for both procedures). The occurrence
of enzymatic activity within misfolded prionoid
aggregates suggests that these structures may
represent the remnant of a compensatory mech-
anism which still engages misfolded substrates
for their metabolism. In fact, it is a matter of
debate whether prionoids aggregates are neuro-
protective42 or rather their misfolded con-
stituents exert neurotoxicity when available for
various cell structures.43,44

In spite of the faith of prionoid-containing
neuronal inclusions for the original neuron, it is
fascinating that in recent years these misfolded
proteins were shown to spread from cell to cell.45

Prionoids spreading is supposed to occur via dif-
ferent mechanisms each including various steps
described in the following paragraph.

How misfolded proteins
spread from cell to cell

Recent evidence shows that self-propagation
of the protein misfolding process is similar to
prion diseases. In keeping with AGEs, their
interaction with specific RAGEs represents a
critical step. In fact, AGEs derived from specific
prionoids including β-amyloid, tau, α-synuclein
are implicated in cell-to-cell transmission.28,46-48

Namely, AGEs can interact with specific recep-
tors, named RAGEs, placed on brain endotheli-
um, microglia and neurons.49-51 The investiga-
tion of AGEs-RAGEs interaction opens new
insights in the knowledge of cell-to-cell trans-
mission of altered proteins52 or the implication
of glia in the propagation of these altered pro-
teins.53 At present, immunohistochemistry pro-
vided the chance to label and localize RAGEs in
combination with major histocompatibility pro-
teins bridging the spreading of neurodegenera-
tion with altered immune system.54,55 This is fur-
ther substantiated by the primary structure of
RAGEs which belong to the superfamily of
immunoglobulins. In fact, RAGEs possess three
immunoglobulin domains, one extracellular V
(variable) type and two C (constant) types which
anchor the receptor to the cell membrane.56 The
V domain binds AGEs and β-sheet chains. The
binding of AGEs with RAGEs, apart from spread-
ing prionoids, triggers a variety of transduction
mechanisms which activate various biochemical
cascade in neighbouring cells. These include
RAGE-mediated activation of Protein Kinase C
and NF-kB which leads to a further increase in
RAGE expression by a positive feedback mecha-
nism.28 Such a vicious circle may magnify the
deleterious effects of prionoids spreading extra-
cellularly. Apart from RAGEs, other mechanisms,

including exosomes,57 tunnelling nanotubes,58

and trogocytosis,59 seem to be responsible for
such a transmission.

Protein aggregates are often associated
with the membrane trafficking machinery.60

This topography is critical for the faith of
altered protein aggregates. In the case of prion
disease, an endocytic recycling pathway has
been demonstrated.60 Double immunostaining,
with fluorescent probes (i.e., fluorescein and
rodamine), allows detecting aggregates co-
localised with different cell organelles, such as
exosomes and microtubules.61 This immuno-
histochemical analysis demonstrated the asso-

ciation between exosomes and protein aggre-
gates.46,62 Morphological investigations of exo-
somes are critical considering that exosomes
have been shown to secrete in the extracellu-
lar space prions,63 β-amyloid peptides,64 and α-
synuclein.39

Cell-to-cell spreading of prionoids repre-
sents a hot research topic which is investigat-
ed in its specific steps. This process appears to
be critical for the progression of neurodegen-
erative disorders and configures as a solid
bridge between altered protein clearance, pro-
tein aggregates, post-translational protein
alterations, and cell to cell transmission. This

Views and Comments

Figure 1. PC12 cells after methamphetamine treatment. A) Magnetic beads: an α-synucle-
in-positive aggregate (arrow) is attached to the magnetic bead (asterix); the α-synuclein pri-
onoid co-localizes with the pro-autophagy protein cathepsin D, revealed by an immunogold
particle (arrowhead); scale bar: 100 nm. B) Differential centrifugation; α-Synuclein-positive
aggregate co-localizes with protein clearing marker cathepsin D for autophagy (20 nm and
10 nm immunogold particles, respectively; arrows); scale bar: 40 nm.
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latter point applies both to altered neuronal
transmission and altered immune networks
which at this level possess a remarkable over-
lapping and enhance each other. 

The chance to detect these specific steps by
dedicated histochemical approaches was
emphasized in the light of future research
efforts.
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