Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study

Published: 30 June 2009
Abstract Views: 498
PDF: 483
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Sarcoglycans are transmembrane proteins that seem to be functionally and pathologically as important as dystrophin. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle. It has been proposed that the dystrophin-glycoprotein complex (DGC) links the actin cytoskeleton with the extracellular matrix and the proper maintenance of this connection is thought to be crucial to the mechanical stability of the sarcolemma. The integrins are a family of heterodimeric cell surface receptors which play a crucial role in cell adhesion including cell-matrix and intracellular interactions and therefore are involved in various biological phenomena, including cell migration, and differentiation tissue repair. Sarcoglycans and integrins play a mechanical and signaling role stabilizing the systems during cycles of contraction and relaxation.Several studies suggested the possibility that integrins might play a role in muscle agrin signalling. On these basis, we performed an immunohistochemical analyzing sarcoglycans, integrins and agrin, on human skeletal muscle affected by sensitive-motor polyneuropathy, in order to better define the correlation between these proteins and neurogenic atrophy due to peripheral neuropathy. Our results showed the existence of a cascade mechanism which provoke a loss of regulatory effects of muscle activity on costameres, due to loss of muscle and neural agrin.This cascade mechanism could determine a quantitative modification of transmembrane receptors and loss of ?7B could be replaced and reinforced by enhanced expression of the ?7A integrin to restore muscle fiber viability. Second, it is possible that the reduced cycles of contraction and relaxation of muscle fibers, during muscular atrophy, provoke a loss of mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix. Consequently, these mechanical changes could determine modifications of chemical signals through variations of pathway structural integrins, and ?7A could replace ?7B.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

Anastasi, G., Cutroneo, G., Santoro, G., Arco, A., Rizzo, G., Trommino, C., & Bramanti, P. (2009). Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study. European Journal of Histochemistry, 50(4), 327–336. https://doi.org/10.4081/1004

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
0
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A