Efficiency of two different transfection reagents for use with human NTERA2 cells

Published: 10 August 2009
Abstract Views: 545
PDF: 613
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The teratocarcinoma cell line NTERA2 is recently used in a wide range of researches (from developmental biology to toxicology, for their ability to be induced to neural differentiation. In order to study the genetic potential of these cells, it is needed to use methods for gene silencing and/or mRNA interference, allowing cell viability and further differentiation. To check these features, we simultaneously tested the transfection efficiency of NTERA2, A549 and HeLa cells with Metafectene PRO (Biontex, Germany) and another optimal transfection reagent currently used in our Laboratory, using as a reporter gene the DsRed2 vector (Clontech, Mountain View, CA). Under our culture conditions for NTERA2 and HeLa cells, Metafectene PRO transfection method was found to possess high throughput performance, that allows low concentration rate and low exposure time to excitation light source, thus reducing both toxicity and phototoxicity.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

Aluigi, M., Hofreiter, S., Falugi, C., Pestarino, M., & Candiani, S. (2009). Efficiency of two different transfection reagents for use with human NTERA2 cells. European Journal of Histochemistry, 51(4), 301–304. https://doi.org/10.4081/1155

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
0
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A