Immunopositivity for Siglec-15 in gastric cancer and its association with clinical and pathological parameters

Submitted: 23 August 2020
Accepted: 9 February 2021
Published: 4 March 2021
Abstract Views: 1827
PDF: 848
Supplementary: 154
HTML: 6
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The sialic acid-binding immunoglobulin-type lectin Siglec-15 is a promising target to cancer immunotherapy in several tumor types. The present study aimed to investigate Siglec-15 expression in gastric cancer (GC) patient tissue and to evaluate its clinical value. Siglec-15 expression was evaluated by immunohistochemistry with 71 patients. Siglec-15 staining was observed in tumor cells of 53 (74.64%) patients, with significant association with histologic classification and angiolymphatic invasion (p<0.05). Immunohistochemistry analysis also detected Siglec-15 in tumor-associated stroma cells (macrophages/myeloid cells). There was no significant association with outcomes parameters. Siglec-15 expression in well differentiated histological GC tissues and in the tumor microenvironment are potential targets to be further investigated as a novel prognostic factor for GC.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Luebke T, Baldus SE, Grass G, Bollschweiler E, Thiele J, Dienes HP, et al. Histological grading in gastric cancer by Ming classification: Correlation with histopathological subtypes, metastasis, and prognosis. World J Surg. 2005;29:1422-7. DOI: https://doi.org/10.1007/s00268-005-7795-z
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. DOI: https://doi.org/10.3322/caac.21492
Matsuoka T, Yashiro M. Biomarkers of gastric cancer: Current topics and future perspective. World J Gastroenterol 2018;24:2818–32. DOI: https://doi.org/10.3748/wjg.v24.i26.2818
Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006;126:855–67. DOI: https://doi.org/10.1016/j.cell.2006.08.019
Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 2019;25:656–66. DOI: https://doi.org/10.1038/s41591-019-0374-x
Peixoto A, Relvas-Santos M, Azevedo R, Lara Santos L, Ferreira JA. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front Oncol 2019;9:1–24. DOI: https://doi.org/10.3389/fonc.2019.00380
Mereiter S, Balmaña M, Campos D, Gomes J, Reis CA. Glycosylation in the era of cancer-targeted therapy: Where are we heading? Cancer Cell 2019;36:6–16. DOI: https://doi.org/10.1016/j.ccell.2019.06.006
Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget 2016;7:35478–89. DOI: https://doi.org/10.18632/oncotarget.8155
Brown Chandler K, E. Costello C, Rahimi N. Glycosylation in the tumor microenvironment: implications for tumor angiogenesis and metastasis. Cells 2019;8:544. DOI: https://doi.org/10.3390/cells8060544
Chung CY, Yin B, Wang Q, Chuang KY, Chu JH, Betenbaugh MJ. Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the α2,3 sialylation linkage of mammalian glycoproteins. Biochem Biophys Res Commun 2015;463:211–5. DOI: https://doi.org/10.1016/j.bbrc.2015.05.023
Angata T, Tabuchi Y, Nakamura K, Nakamura M. Siglec-15: An immune system Siglec conserved throughout vertebrate evolution. Glycobiology 2007;17:838–46. DOI: https://doi.org/10.1093/glycob/cwm049
Kizuka Y, Nakano M, Yamaguchi Y, Nakajima K, Oka R, Sato K, et al. An alkynyl-fucose halts hepatoma cell migration and invasion by inhibiting GDP-fucose-synthesizing enzyme FX, TSTA3. Cell Chem Biol 2017;24:1467-78.e5. DOI: https://doi.org/10.1016/j.chembiol.2017.08.023
Friedrichs K, Gluba S, Eidtmann H, Jonat W. Overexpression of p53 and prognosis in breast cancer. Cancer 1993;72:3641–7. DOI: https://doi.org/10.1002/1097-0142(19931215)72:12<3641::AID-CNCR2820721215>3.0.CO;2-8
De Souza Albuquerque MS, Da Silva-Filho AF, Ferraz Cordeiro M, Deodato de Souza MF, Quirino MWL, Amorim Lima LR, et al. GalNAc-T15 in gastric adenocarcinoma: Characterization according to tissue architecture and cellular location. Eur J Histochem 2018;62:2931. DOI: https://doi.org/10.4081/ejh.2018.2931
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018;173:321-37.e10.
Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202–9. DOI: https://doi.org/10.1038/nature13480
Fuster MM, Esko JD. The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Rev Cancer 2005;5:526–42. DOI: https://doi.org/10.1038/nrc1649
Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a siglec-based mechanism for NK cell immunoevasion. Physiol Behav 2014;10:69–79. DOI: https://doi.org/10.1038/nchembio.1388
Li Q-T, Huang Z-Z, Chen Y-B, Yao H-Y, Ke Z-H, He X-X, et al. Integrative analysis of siglec-15 mRNA in human cancers based on data mining. J Cancer 2020;11:2453–64. DOI: https://doi.org/10.7150/jca.38747
Ren X. Immunosuppressive checkpoint Siglec-15: a vital new piece of the cancer immunotherapy jigsaw puzzle. Cancer Biol Med 2019;16:205-10. DOI: https://doi.org/10.20892/j.issn.2095-3941.2018.0141
Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 2013;23:178-87. DOI: https://doi.org/10.1093/glycob/cws139
Nowicki TS, Hu-lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J 2018;24:47–53. DOI: https://doi.org/10.1097/PPO.0000000000000303
O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune cell mediated disease. Trends Pharmacol Sci 2009;30:240–8. DOI: https://doi.org/10.1016/j.tips.2009.02.005
Tuscano JM, Kato J, Pearson D, Xiong C, Newell L, Ma Y, et al. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy. Cancer Res 2012;72:5556–65.
Wang S, Chen X, Wei A, Yu X, Niang B, Zhang J. α2,6-linked sialic acids on N-glycans modulate the adhesion of hepatocarcinoma cells to lymph nodes. Tumor Biol 2015;36:885–92. DOI: https://doi.org/10.1007/s13277-014-2638-x
Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res 2015;194:107-13. DOI: https://doi.org/10.1016/j.jss.2014.09.035
Cao Y, Liu H, Zhang H, Lin C, Li R et al. Decreased expression of Siglec-8 associates with poor prognosis in patients with gastric cancer after surgical resection. Tumor Biol 2016;37:10883-91. DOI: https://doi.org/10.1007/s13277-016-4859-7
Läubli H, Alisson-Silva F, Stanczak MA, Siddiqui SS, Deng L, Verhagen A et al. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J Biol Chem 2014;289:33481-91. DOI: https://doi.org/10.1074/jbc.M114.593129
Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 2001;6:339-53. DOI: https://doi.org/10.1023/A:1011379725811
Belisle JA, Horibata S, Jennifer GAA, Petrie S, Kapur A, André S et al. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer 2010;9:118. DOI: https://doi.org/10.1186/1476-4598-9-118
Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol 2016;17:1273-81. DOI: https://doi.org/10.1038/ni.3552
Kawasaki Y, Ito A, Withers DA, Taima T, Kakoi N, Saito S, et al. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010;20:1373-9. DOI: https://doi.org/10.1093/glycob/cwq116
Tuscano JM, Kato J, Pearson D, Xiong C, Newell L, Ma Y et al. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy. Cancer Res 2012;72:5556-5. DOI: https://doi.org/10.1158/0008-5472.CAN-12-0173

Ethics Approval

Ethical approval was obtained from the Human Ethics Committee of the Hospital do Câncer de Pernambuco (HCP) (CAAE: 39976214.90000.5205).

Supporting Agencies

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

How to Cite

Quirino, M. W. L., Pereira, M. C., Deodato de Souza, M. de F., Pitta, I. da R., da Silva Filho, A. F., Albuquerque, M. S. de S., … Rêgo, M. J. B. de M. (2021). Immunopositivity for Siglec-15 in gastric cancer and its association with clinical and pathological parameters. European Journal of Histochemistry, 65(1). https://doi.org/10.4081/ejh.2021.3174

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
192
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A