Ultrastructural immunocytochemistry shows impairment of RNA pathways in skeletal muscle nuclei of old mice: A link to sarcopenia?

Submitted: 15 February 2021
Accepted: 15 March 2021
Published: 24 March 2021
Abstract Views: 1125
PDF: 532
HTML: 10
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

During aging, skeletal muscle is affected by sarcopenia, a progressive decline in muscle mass, strength and endurance that leads to loss of function and disability. Cell nucleus dysfunction is a possible factor contributing to sarcopenia because aging-associated alterations in mRNA and rRNA transcription/maturation machinery have been shown in several cell types including muscle cells. In this study, the distribution and density of key molecular factors involved in RNA pathways namely, nuclear actin (a motor protein and regulator of RNA transcription), 5-methyl cytosine (an epigenetic regulator of gene transcription), and ribonuclease A (an RNA degrading enzyme) were compared in different nuclear compartments of late adult and old mice myonuclei by means of ultrastructural immunocytochemistry. In all nuclear compartments, an age-related decrease of nuclear actin suggested altered chromatin structuring and impaired nucleus-to-cytoplasm transport of both mRNA and ribosomal subunits, while a decrease of 5-methyl cytosine and ribonuclease A in the nucleoli of old mice indicated an age-dependent loss of rRNA genes. These findings provide novel experimental evidence that, in the aging skeletal muscle, nuclear RNA pathways undergo impairment, likely hindering protein synthesis and contributing to the onset and progression of sarcopenia.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 2010; 39:412–23. DOI: https://doi.org/10.1093/ageing/afq034
Combaret L, Dardevet D, Béchet D, Taillandier D, Mosoni L, Attaix D. Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 2009;12:37-41. DOI: https://doi.org/10.1097/MCO.0b013e32831b9c31
Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 2007;292:E151-7. DOI: https://doi.org/10.1152/ajpendo.00278.2006
Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005;102:5618–23. DOI: https://doi.org/10.1073/pnas.0501559102
Pegoraro G, Misteli T. The central role of chromatin maintenance in aging. Aging (Albany NY) 2009;1:1017–22. DOI: https://doi.org/10.18632/aging.100106
Tiku V, Antebi A. Nucleolar function in lifespan regulation. Trends Cell Biol 2018;28:662-72. DOI: https://doi.org/10.1016/j.tcb.2018.03.007
Dirks AJ, Leeuwenburgh C. The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005;35:473-83. DOI: https://doi.org/10.2165/00007256-200535060-00002
Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, et al. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxford) 2016;216:15–41. DOI: https://doi.org/10.1111/apha.12532
Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019;127:26-36. DOI: https://doi.org/10.1016/j.bone.2019.05.021
Falcone C, Mazzoni C. RNA stability and metabolism in regulated cell death, aging and diseases. FEMS Yeast Res 2018;18:foy050. DOI: https://doi.org/10.1093/femsyr/foy050
Meshorer E, Soreq H. Pre-mRNA splicing modulations in senescence. Aging Cell 2002;1:10-6. DOI: https://doi.org/10.1046/j.1474-9728.2002.00005.x
Wahle E, Ruegsegger U. 3’-end processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 1999;23:277–95. DOI: https://doi.org/10.1016/S0168-6445(99)00008-X
Fakan S. Ultrastructural cytochemical analyses of nuclear functional architecture. Eur J Histochem 2004;48:5-14.
Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, et al. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell 1999;10:211–23. DOI: https://doi.org/10.1091/mbc.10.1.211
Cardinale S, Cisterna B, Sonetti P, Aringhieri C, Biggiogera M, Barabino SML. Subnuclear localization and dynamics of the pre-mRNA 3’ end processing factor CFIm68. Mol Biol Cell 2007;18:1282–92. DOI: https://doi.org/10.1091/mbc.e06-09-0846
Biggiogera M, Cisterna B, Spedito A, Vecchio L, Malatesta M. Perichromatin fibrils as early markers of transcriptional alterations. Differentiation 2008;76:57-65. DOI: https://doi.org/10.1111/j.1432-0436.2007.00211.x
Puvion E, Puvion-Dutilleul F. Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 1996;229:217-25. DOI: https://doi.org/10.1006/excr.1996.0363
Cookson MR. Aging - RNA in Development and Disease. Wiley Interdiscip Rev RNA 2012;3:133–43. DOI: https://doi.org/10.1002/wrna.109
Malatesta M, Baldelli B, Battistelli S, Fattoretti P, Bertoni-Freddari C. Aging affects the distribution of the circadian CLOCK protein in rat hepatocytes. Microsc Res Tech 2005;68:45-50. DOI: https://doi.org/10.1002/jemt.20221
Malatesta M, Fattoretti P, Baldelli B, Battistelli S, Balietti M, Bertoni-Freddari C. Effects of ageing on the fine distribution of the circadian CLOCK protein in reticular formation neurons. Histochem Cell Biol 2007;127:641-7. DOI: https://doi.org/10.1007/s00418-007-0284-8
Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 2009;53:e12. DOI: https://doi.org/10.4081/ejh.2009.e12
Malatesta M, Biggiogera M, Cisterna B, Balietti M, Bertoni-Freddari C, Fattoretti P. Perichromatin fibrils accumulation in hepatocyte nuclei reveals alterations of pre-mRNA processing during aging. DNA Cell Biol 2010;29:49-57. DOI: https://doi.org/10.1089/dna.2009.0880
Cutler AA, Dammer EB, Doung DM, Seyfried NT, Corbett AH, Pavlath GK. Biochemical isolation of myonuclei employed to define changes to the myonuclear proteome that occur with aging. Aging Cell 2017;16:738-49. DOI: https://doi.org/10.1111/acel.12604
Malatesta M, Bertoni-Freddari C, Fattoretti P, Caporaloni C, Fakan S, Gazzanelli G. Altered RNA structural constituents in aging and vitamin E deficiency. Mech Ageing Dev 2003;124:175-81. DOI: https://doi.org/10.1016/S0047-6374(02)00117-3
Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 2017;8:328. DOI: https://doi.org/10.1038/s41467-017-00322-z
Duncan FE, Jasti S, Paulson A, Kelsh JM, Fegley B, Gerton JL. Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell 2017;16:1381-93. DOI: https://doi.org/10.1111/acel.12676
Malatesta M, Giagnacovo M, Costanzo M, Cisterna B, Cardani R, Meola G. Muscleblind-like1 undergoes ectopic relocation in the nuclei of skeletal muscles in myotonic dystrophy and sarcopenia. Eur J Histochem 2013;57:e15. DOI: https://doi.org/10.4081/ejh.2013.e15
Cisterna B, Giagnacovo M, Costanzo M, Fattoretti P, Zancanaro C, Pellicciari C et al. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. J Anat 2016;228:771-83. DOI: https://doi.org/10.1111/joa.12429
Malatesta M, Fattoretti P, Giagnacovo M, Pellicciari C, Zancanaro C. Physical training modulates structural and functional features of cell nuclei in type II myofibers of old mice. Rejuvenation Res 2011;14:543-52. DOI: https://doi.org/10.1089/rej.2011.1175
Kelpsch DJ, Tootle TL. Nuclear actin: From discovery to function. Anat Rec (Hoboken) 2018;301:1999-2013. DOI: https://doi.org/10.1002/ar.23959
Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet 2018;9:640. DOI: https://doi.org/10.3389/fgene.2018.00640
Hahn U, Desai-Hahn R, Rüterjans H. 1H and 15N NMR investigation of the interaction of pyrimidine nucleotides with ribonuclease A. Eur J Biochem 1985;146:705-12. DOI: https://doi.org/10.1111/j.1432-1033.1985.tb08708.x
Biggiogera M, Masiello I. Visualizing RNA at electron microscopy by terbium citrate. Methods Mol Biol 2017;1560:277-83. DOI: https://doi.org/10.1007/978-1-4939-6788-9_21
Kristó I, Bajusz I, Bajusz C, Borkúti P, Vilmos P. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol 2016;145:373-88. DOI: https://doi.org/10.1007/s00418-015-1400-9
Cisterna B, Necchi D, Prosperi E, Biggiogera M. Small ribosomal subunits associate with nuclear myosin and actin in transit to the nuclear pores. FASEB J 2006;20:1901-3. DOI: https://doi.org/10.1096/fj.05-5278fje
Cisterna B, Malatesta M, Dieker J, Muller S, Prosperi E, Biggiogera M. An active mechanism flanks and modulates the export of the small ribosomal subunits. Histochem Cell Biol 2009;131:743-53. DOI: https://doi.org/10.1007/s00418-009-0583-3
Biggiogera M, Malatesta M, Abolhassani-Dadras S, Amalric F, Rothblum LI, Fakan S. Revealing the unseen: the organizer region of the nucleolus. J Cell Sci 2001;114:3199-205.
Schwarzacher HG, Wachtler F. The nucleolus. Anat Embryol (Berl) 1993;188:515-36.
Kirby TJ, Lee JD, England JH, Chaillou T, Esser KA, McCarthy JJ. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. J Appl Physiol (1985) 2015;119:321-7. DOI: https://doi.org/10.1152/japplphysiol.00296.2015
Alison I, Bernstein, Peng J. High-throughput sequencing-based mapping of cytosine modifications. In: Y. G. Zheng, Editor. Epigenetic Technological Applications. Academic Press; 2015. p. 39-53. DOI: https://doi.org/10.1016/B978-0-12-801080-8.00003-X
Masiello I, Biggiogera M. Ultrastructural localization of 5-methylcytosine on DNA and RNA. Cell Mol Life Sci 2017;74:3057-64. DOI: https://doi.org/10.1007/s00018-017-2521-1
Trixl L, Lusser A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA 2019;10:e1510. DOI: https://doi.org/10.1002/wrna.1510
Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res 2017;27:606-25. DOI: https://doi.org/10.1038/cr.2017.55
Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010;29:2135-46. DOI: https://doi.org/10.1038/emboj.2010.17
Gaubatz JW, Cutler RG. Age-related differences in the number of ribosomal RNA genes of mouse tissues. Gerontology 1978;24:179-207. DOI: https://doi.org/10.1159/000212250
Zafiropoulos A, Tsentelierou E, Linardakis M, Kafatos A, Spandidos DA. Preferential loss of 5S and 28S rDNA genes in human adipose tissue during ageing. Int J Biochem Cell Biol 2005;37:409-15. DOI: https://doi.org/10.1016/j.biocel.2004.07.007
Reilly ME, Erylaz EI, Amir A, Peters TJ, Preedy VR. Skeletal muscle ribonuclease activities in chronically ethanol‐treated rats. Alcohol Clin Exp Res 1998;22:876-83. DOI: https://doi.org/10.1111/j.1530-0277.1998.tb03882.x
Thakur J, Henikoff S. Architectural RNA in chromatin organization. Biochem Soc Trans 2020;48:1967-78. DOI: https://doi.org/10.1042/BST20191226
Masiello I, Siciliani S, Biggiogera M. Perichromatin region: a moveable feast. Histochem Cell Biol 2018;150:227-33. DOI: https://doi.org/10.1007/s00418-018-1703-8
Li S, Hu GF. Angiogenin-mediated rRNA transcription in cancer and neurodegeneration. Int J Biochem Mol Biol 2010;1:26-35.
Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007;8:574-85. DOI: https://doi.org/10.1038/nrm2184
Costanzo M, Cisterna B, Zharskaya OO, Zatsepina OV, Biggiogera M. Discrete foci containing RNase A are found in nucleoli of HeLa cells after aging in culture. Eur J Histochem 2011;55:e15. DOI: https://doi.org/10.4081/ejh.2011.e15
Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI. NOPdb: nucleolar proteome database–2008 update. Nucleic Acids Res 2009;37:D181-4. DOI: https://doi.org/10.1093/nar/gkn804
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013;280:4294-314. DOI: https://doi.org/10.1111/febs.12253

How to Cite

Lacavalla, M. A., Cisterna, B., Zancanaro, C., & Malatesta, M. (2021). Ultrastructural immunocytochemistry shows impairment of RNA pathways in skeletal muscle nuclei of old mice: A link to sarcopenia? . European Journal of Histochemistry, 65(2). https://doi.org/10.4081/ejh.2021.3229

Similar Articles

<< < 27 28 29 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.