miR-1270 enhances the proliferation, migration, and invasion of osteosarcoma via targeting cingulin

Submitted: 26 February 2021
Accepted: 17 August 2021
Published: 7 December 2021
Abstract Views: 838
PDF: 382
HTML: 18
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Osteosarcoma (OS), characterized by high morbidity and mortality, is the most common bone malignancy worldwide. MicroRNAs (miRNAs) play a crucial role in the initiation and development of OS. The purpose of this study was to investigate the roles of miR-1270 in OS. RT-qPCR and Western blot were applied to detect the mRNA and protein level, respectively. CCK-8, colony formation, and TUNEL assays were conducted to determine the cell viability, proliferation, and apoptosis of OS cells. Wound healing and transwell assay were performed to detect the migration and invasion ability of OS cells. Bioinformatics analysis and dual-luciferase reporter assay were used to predict the target genes of miR-1270. Tumor xenograft in vivo assay was carried out to determine miR-1270 effect on the tumor size, volume, and weight. In this study, miR-1270 was overexpressed in OS tissues and cells. However, miR-1270 knockdown inhibited the proliferation, migration and invasion, and promoted the OS cells’ apoptosis. Mechanistically, cingulin (CGN) was predicted and proved to be a target of miR-1270 and partially alleviated the effects of miR-1270 on the proliferation, migration and invasion ability of OS cells. Taken together, knockdown of miR-1270 may inhibit the development of OS via targeting CGN. This finding may provide a novel therapeutic strategy for OS.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res 2009;152:3-13. DOI: https://doi.org/10.1007/978-1-4419-0284-9_1
Fathizadeh H, Mirzaei H, Asemi Z. Melatonin: an anti-tumor agent for osteosarcoma. Cancer Cell Int 2019;19:319. DOI: https://doi.org/10.1186/s12935-019-1044-2
Bishop Mw, Janeway Ka, Gorlick R. Future directions in the treatment of osteosarcoma. Curr Opin Pediatr 2016;28:26-33. DOI: https://doi.org/10.1097/MOP.0000000000000298
Wang L, Wang L, Zhang X. Knockdown of lncRNA HOXA-AS2 Inhibits viability, migration and invasion of osteosarcoma cells by miR-124-3p/E2F3. Onco Targets Ther 2019;12:10851-61. DOI: https://doi.org/10.2147/OTT.S220072
He L, Hannon GJ. Micrornas: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-31. DOI: https://doi.org/10.1038/nrg1379
Dong S, Xiao Y, Ma X, He W, Kang J, Peng Z, et. al. miR-193b increases the chemosensitivity of osteosarcoma cells by promoting FEN1-mediated autophagy. Onco Targets Ther 2019;12:10089-98. DOI: https://doi.org/10.2147/OTT.S219977
Salarinia R, Sahebkar A, Peyvandi M, Mirzaei HR, Jaafari MR, Riahi MM, et al. Epi-drugs and Epi-miRs: Moving beyond current cancer therapies. Curr Cancer Drug Targets 2016;16:773-88. DOI: https://doi.org/10.2174/1568009616666151207110143
Sadri Nahand J, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020;146:305-20. DOI: https://doi.org/10.1002/ijc.32688
Gholamin S, Pasdar A, Khorrami MS, Mirzaei H, Mirzaei HR, Salehi R, et al. The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment. Curr Pharm Des 2016;22:397-403. DOI: https://doi.org/10.2174/1381612822666151112151924
Mirzaei H, Hamblin MR. Regulation of glycolysis by non-coding RNAs in cancer: Switching on the Warburg effect. Mol Ther Oncolytics 2020;19:218-39. DOI: https://doi.org/10.1016/j.omto.2020.10.003
Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, et al. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021;161:314-27. DOI: https://doi.org/10.1016/j.ygyno.2021.02.004
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, et al. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2021;157:103192. DOI: https://doi.org/10.1016/j.critrevonc.2020.103192
Zhao ZY, Zhao YC, Liu W. Long non-coding RNA TUG1 regulates the progression and metastasis of osteosarcoma cells via miR-140-5p/PFN2 axis. Eur Rev Med Pharmacol Sci 2019;23:9781-92.
Dou XQ, Chen XJ, Zhou Q, Wen MX, Zhang SZ, Zhang SQ. miR-335 modulates Numb alternative splicing via targeting RBM10 in endometrial cancer. Kaohsiung J Med Sci 2020;36:171-7. DOI: https://doi.org/10.1002/kjm2.12149
Huang Q, Xing S, Peng A, Yu Z. NORAD accelerates chemo-resistance of non-small-cell lung cancer via targeting at miR-129-1-3p/SOX4 axis. Biosci Rep 2020;40:BSR20193489. DOI: https://doi.org/10.1042/BSR20193489
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, et al. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020;72:1306-21. DOI: https://doi.org/10.1002/iub.2277
Zhang Z, Zhao M, Wang G. Hsa_circ_0051079 functions as an oncogene by regulating miR-26a-5p/TGF-β1 in osteosarcoma. Cell Biosci 2019;9:94. DOI: https://doi.org/10.1186/s13578-019-0355-2
Zhang W, Wei L, Sheng W, Kang B, Wang D, Zeng H. miR-1225-5p functions as a tumor suppressor in osteosarcoma by targeting Sox9. DNA Cell Biol 2020;39:78-91. DOI: https://doi.org/10.1089/dna.2019.5105
Luo Y, Liu W, Tang P, Jiang D, Gu C, Huang Y, et. al. miR-624-5p promoted tumorigenesis and metastasis by suppressing hippo signaling through targeting PTPRB in osteosarcoma cells. J Exp Clin Cancer Res 2019;38:488. DOI: https://doi.org/10.1186/s13046-019-1491-6
Patil SL, Palat A, Pan Y, Rajapakshe K, Mirchandani R, Bondesson M, et. al. MicroRNA-509-3p inhibits cellular migration, invasion, and proliferation, and sensitizes osteosarcoma to cisplatin. Sci Rep 2019;9:19089. DOI: https://doi.org/10.1038/s41598-019-55170-2
Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, et al. Piperlongumine improves lipopolysaccharide-induced amyloidogenesis by suppressing NF-KappaB pathway. Neuromolecular Med 2018;20:312-27. DOI: https://doi.org/10.1007/s12017-018-8495-9
Zhong L, Zheng C, Fang H, Xu M, Chen B, Li C. MicroRNA-1270 is associated with poor prognosis and its inhibition yielded anticancer mechanisms in human osteosarcoma. IUBMB Life 2018;70:625-32. DOI: https://doi.org/10.1002/iub.1753
Zhou W, Gong J, Chen Y, Chen J, Zhuang Q, Cao J, et al. Long noncoding RNA LINC00899 suppresses breast cancer progression by inhibiting miR-425. Aging (Albany NY) 2019;11:10144-53. DOI: https://doi.org/10.18632/aging.102426
Ma D, Cao Y, Wang Z, He J, Chen H, Xiong H, et. al. CCAT1 lncRNA promotes inflammatory bowel disease malignancy by destroying intestinal barrier via downregulating miR-185-3p. Inflamm Bowel Dis 2019;25:862-74. DOI: https://doi.org/10.1093/ibd/izy381
Turner JR, Buschmann MM, Romero-Calvo I, Sailer A, Shen LE. The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol 2014;36:204-12. DOI: https://doi.org/10.1016/j.semcdb.2014.09.022
Luo J, Wang H, Chen H, Gan G, Zheng Y. CLDN4 silencing promotes proliferation and reduces chemotherapy sensitivity of gastric cancer cells through activation of PI3K/Akt signaling pathway. Exp Physiol 2020;105:979-88. DOI: https://doi.org/10.1113/EP088112
Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, et. al. Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal 2019;17:167. DOI: https://doi.org/10.1186/s12964-019-0480-x
Zhang X, Wang H, Li Q, Li T. CLDN2 inhibits the metastasis of osteosarcoma cells via down-regulating the afadin/ERK signaling pathway. Cancer Cell Int 2018;18:160. DOI: https://doi.org/10.1186/s12935-018-0662-4
van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014;36:157-65. DOI: https://doi.org/10.1016/j.semcdb.2014.08.011
Oliveto S, Alfieri R, Miluzio A, Scagliola A, Secli RS, Gasparini P, et al. A polysome-based microRNA screen identifies miR-24-3p as a novel promigratory miRNA in mesothelioma. Cancer Res 2018;78:5741-53. DOI: https://doi.org/10.1158/0008-5472.CAN-18-0655
Zhang L, Feng T, Spicer LJ. The role of tight junction proteins in ovarian follicular development and ovarian cancer. Reproduction 2018;155:R183-98. DOI: https://doi.org/10.1530/REP-17-0503
Kim N, Do J, Bae JS, Jin HK, Kim JH, Inn KS, et al. Piperlongumine inhibits neuroinflammation via regulating NF-kappaB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. J Pharmacol Sci 2018;137:195-201. DOI: https://doi.org/10.1016/j.jphs.2018.06.004
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhao JG. Multifactorial scores and biomarkers of prognosis of acute pancreatitis: applications to research and practice. Int J Mol Sci 2020;21:338. DOI: https://doi.org/10.3390/ijms21010338
Yuan W, Zhou R, Wang J, Han J, Yang X, Yu H, et al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol Oncol 2019;13:1559-76. DOI: https://doi.org/10.1002/1878-0261.12523
Zhao Z, Ji M, Wang Q, He N, Li Y. Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids 2019;18:24-33. DOI: https://doi.org/10.1016/j.omtn.2019.07.012
Yi T, Zhou X, Sang K, Zhou J, Ge L. MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI. Biomed Pharmacother 2019;109:2357-64. DOI: https://doi.org/10.1016/j.biopha.2018.08.150
Wei L, Li P, Zhao C, Wang N, Wei N. Upregulation of microRNA-1270 suppressed human glioblastoma cancer cell proliferation migration and tumorigenesis by acting through WT1. Onco Targets Ther 2019;12:4839-48. DOI: https://doi.org/10.2147/OTT.S192521
Hassan M, Watari H, Abualmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014;2014:150845. DOI: https://doi.org/10.1155/2014/150845
Giampazolias E, Tait SWG. Caspase-independent cell death: An anti-cancer double whammy. Cell Cycle 2018;17:269-70. DOI: https://doi.org/10.1080/15384101.2017.1408229
Nishimura A, Akeda K, Matsubara T, Kusuzaki K, Matsumine A, Masuda K, et al. Transfection of NF-κB decoy oligodeoxynucleotide suppresses pulmonary metastasis by murine osteosarcoma. Cancer Gene Ther 2011;18:250-9. DOI: https://doi.org/10.1038/cgt.2010.75
Nilchian A, Johansson J, Ghalali A, Asanin St, Santiago A, Rosencrantz O, et. al. CXADR-mediated formation of an AKT inhibitory signalosome at tight junctions controls epithelial-mesenchymal plasticity in breast cancer. Cancer Res 2019;79:47-60. DOI: https://doi.org/10.1158/0008-5472.CAN-18-1742
Ginzburg S, Golovine KV, Makhov PB, Uzzo RG, Kutikov A, Kolenko VM. Piperlongumine inhibits NF-kappaB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate 2014;74:177-86. DOI: https://doi.org/10.1002/pros.22739
Cen J, Feng L, Ke H, Bao L, Li Lz, Tanaka Y, et al. Exosomal thrombospondin-1 disrupts the integrity of endothelial intercellular junctions to facilitate breast cancer cell metastasis. Cancers (Basel) 2019;11:1946. DOI: https://doi.org/10.3390/cancers11121946
Liu ZJ, Chen SG, Yang YZ, Lu SJ, Zhao XM, Hu B, et al. miR-29a inhibits adhesion, migration, and invasion of osteosarcoma cells by suppressing CDC42. Int J Clin Exp Pathol 2019;12:4171-80.

How to Cite

Liu, Y., Guo, W., Fang, S., He, B., Li, X., & Fan, L. (2021). miR-1270 enhances the proliferation, migration, and invasion of osteosarcoma <em>via</em> targeting cingulin. European Journal of Histochemistry, 65(4). https://doi.org/10.4081/ejh.2021.3237

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
3
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
283
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A