miRNA-877-5p inhibits malignant progression of prostate cancer by directly targeting SSFA2

Submitted: 11 March 2021
Accepted: 19 July 2021
Published: 20 September 2021
Abstract Views: 782
PDF: 360
HTML: 20
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In this study, we aimed to investigate the role of miR-877-5p in the malignant phenotypes of prostate cancer (PCa) cells and its underlying mechanism. RT-qPCR analysis was performed to examine the expression of miR-877-5p and sperm-specific antigen 2 (SSFA2) in PCa tissues and cells. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-20-deoxyuridine (EdU) assay, flow cytometry, wound-healing assay, and Transwell invasion assay were performed to determine the functional roles of miR-877-5p in PCa cells. The association of miR-877-5p with SSFA2 was determined by luciferase reporter and RNA pull-down assays. In this study, we found that the expression level of miR-877-5p was decreased in PCa tissues and cells. Functionally, overexpression of miR-877-5p exerted tumor suppressor properties in PCa cells. Mechanistically, SSFA2 was identified as a target gene of miR-877-5p, while overexpression of SSFA2 could abrogate the anti-tumor effects of miR-877-5p in PCa cells. These findings demonstrated that miR-877-5p/SSFA2 axis functioned as a potential target for PCa treatment.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Welch HG, Albertsen PC. Reconsidering prostate cancer mortality - The future of PSA screening. N Engl J Med 2020;382:1557-63. DOI: https://doi.org/10.1056/NEJMms1914228
Boulos S, Mazhar D. The evolving role of chemotherapy in prostate cancer. Future Oncol 2017;13:1091-5. DOI: https://doi.org/10.2217/fon-2016-0464
Sebesta EM, Anderson CB. The surgical management of prostate cancer. Semin Oncol 2017;44:347-57. DOI: https://doi.org/10.1053/j.seminoncol.2018.01.003
Shevach J, Chaudhuri P, Morgans AK. Adjuvant therapy in high-risk prostate cancer. Clin Adv Hematol Oncol 2019;17:45-53.
Chistiakov DA, Myasoedova VA, Grechko AV, Melnichenko AA, Orekhov AN. New biomarkers for diagnosis and prognosis of localized prostate cancer. Semin Cancer Biol 2018;52:9-16. DOI: https://doi.org/10.1016/j.semcancer.2018.01.012
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017;16:203-22. DOI: https://doi.org/10.1038/nrd.2016.246
Lun W, Wu X, Deng Q, Zhi F. MiR-218 regulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via targeting CTGF. Cancer Cell Int 2018;18:83. DOI: https://doi.org/10.1186/s12935-018-0575-2
Wang Y, Tian Y. miR-206 Inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Oncol Res 2018;26:923-31. DOI: https://doi.org/10.3727/096504017X15143731031009
Wang Z, Zhao Z, Yang Y, Luo M, Zhang M, Wang X, et al. MiR-99b-5p and miR-203a-3p function as tumor suppressors by targeting IGF-1R in gastric cancer. Sci Rep 2018;8:10119. DOI: https://doi.org/10.1038/s41598-018-27583-y
Bjartell A. New hope in prostate cancer precision medicine? miRNA replacement and epigenetics. Clin Cancer Res 2019;25:2679-81. DOI: https://doi.org/10.1158/1078-0432.CCR-19-0061
Huh JH, Kim TH, Kim K, Song JA, Jung YJ, Jeong JY, et al. Dysregulation of miR-106a and miR-591 confers paclitaxel resistance to ovarian cancer. Br J Cancer 2013;109:452-61. DOI: https://doi.org/10.1038/bjc.2013.305
Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011;17:211-5. DOI: https://doi.org/10.1038/nm.2284
Xing R. miR-3648 Promotes prostate cancer cell proliferation by inhibiting adenomatous polyposis coli 2. J Nanosci Nanotechnol 2019;19:7526-31. DOI: https://doi.org/10.1166/jnn.2019.16413
Zhang X, Zhou J, Xue D, Li Z, Liu Y, Dong L. MiR-515-5p acts as a tumor suppressor via targeting TRIP13 in prostate cancer. Int J Biol Macromol 2019;129:227-32. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.127
Wang F, Chang JT, Kao CJ, Huang RS. High expression of miR-532-5p, a tumor suppressor, leads to better prognosis in ovarian cancer both in vivo and in vitro. Mol Cancer Ther 2016;15:1123-31. DOI: https://doi.org/10.1158/1535-7163.MCT-15-0943
Zhang L, Li C, Cao L, Li H, Zou H, Li H, et al. microRNA-877 inhibits malignant progression of colorectal cancer by directly targeting MTDH and regulating the PTEN/Akt pathway. Cancer Manag Re. 2019;11:2769-81. DOI: https://doi.org/10.2147/CMAR.S194073
Pafundi PC, Caturano A, Franci G. Comment on: MiR-877-5p suppresses cell growth, migration and invasion by targeting cyclin dependent kinase 14 and predicts prognosis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2018;22:4401-2.
Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, et al. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 2018;16:220. DOI: https://doi.org/10.1186/s12967-018-1593-5
Yan TH, Qiu C, Sun J, Li WH. MiR-877-5p suppresses cell growth, migration and invasion by targeting cyclin dependent kinase 14 and predicts prognosis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2018;22:3038-46.
Xie H, Shi S, Chen Q, Chen Z. LncRNA TRG-AS1 promotes glioblastoma cell proliferation by competitively binding with miR-877-5p to regulate SUZ12 expression. Pathol Res Pract 2019;215:152476. DOI: https://doi.org/10.1016/j.prp.2019.152476
Liang J, Zhang S, Wang W, Xu Y, Kawuli A, Lu J, et al. Long non-coding RNA DSCAM-AS1 contributes to the tumorigenesis of cervical cancer by targeting miR-877-5p/ATXN7L3 axis. Biosci Rep 2020;40:BSR20192061. DOI: https://doi.org/10.1042/BSR20192061
Yun JM, Kweon MH, Kwon H, Hwang JK, Mukhtar H. Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145. Carcinogenesis 2006;27:1454-64. DOI: https://doi.org/10.1093/carcin/bgi348
Wang X, Decker CC, Zechner L, Krstin S, Wink M. In vitro wound healing of tumor cells: inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol Toxicol 2019;20:4. DOI: https://doi.org/10.1186/s40360-018-0284-4
You F, Luan H, Sun D, Cui T, Ding P, Tang H, et al. miRNA-106a promotes breast cancer cell proliferation, clonogenicity, migration, and invasion through inhibiting apoptosis and chemosensitivity. DNA Cell Biol 2019;38:198-207. DOI: https://doi.org/10.1089/dna.2018.4282
Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013;19:1438-49. DOI: https://doi.org/10.1038/nm.3336
Pan JJ, Yang MH. The role of epithelial-mesenchymal transition in pancreatic cancer. J Gastrointest Oncol 2011;2:151-6.
Pastushenko I, Blanpain C. EMT Transition states during tumor progression and metastasis. Trends Cell Biol 2019;29:212-26. DOI: https://doi.org/10.1016/j.tcb.2018.12.001
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014;7:re8. DOI: https://doi.org/10.1126/scisignal.2005189
Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: A central regulator of cancer progression. Trends Cell Biol 2015;25:675-86. DOI: https://doi.org/10.1016/j.tcb.2015.07.012
Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013;342:1234850. DOI: https://doi.org/10.1126/science.1234850
Massillo C, Dalton GN, Farre PL, De Luca P, De Siervi A. Implications of microRNA dysregulation in the development of prostate cancer. Reproduction 2017;154:R81-97. DOI: https://doi.org/10.1530/REP-17-0322
Wu Y, Hu L, Qin Z, Wang X. MicroRNA302a upregulation mediates chemoresistance in prostate cancer cells. Mol Med Rep 2019;19:4433-40. DOI: https://doi.org/10.3892/mmr.2019.10098
Yang B, Zhang W, Sun D, Wei X, Ding Y, Ma Y, et al. Downregulation of miR-139-5p promotes prostate cancer progression through regulation of SOX5. Biomed Pharmacother 2019;109:2128-35. DOI: https://doi.org/10.1016/j.biopha.2018.09.029
Ji L, Jiang X, Mao F, Tang Z, Zhong B. miR5895p is downregulated in prostate cancer and regulates tumor cell viability and metastasis by targeting CCL5. Mol Med Rep 2019;20:1373-82. DOI: https://doi.org/10.3892/mmr.2019.10334
Wang Z, Liu Y. Predicting functional MicroRNA-mRNA interactions. Methods Mol Biol 2017;1580:117-26. DOI: https://doi.org/10.1007/978-1-4939-6866-4_10
Fujimoto T, Koyanagi M, Baba I, Nakabayashi K, Kato N, Sasazuki T, et al. Analysis of KRAP expression and localization, and genes regulated by KRAP in a human colon cancer cell line. J Hum Genet 2007;52:978-84. DOI: https://doi.org/10.1007/s10038-007-0204-8
Okayama A, Kimura Y, Miyagi Y, Oshima T, Oshita F, Ito H, et al. Relationship between phosphorylation of sperm-specific antigen and prognosis of lung adenocarcinoma. J Proteomic. 2016;139:60-6. DOI: https://doi.org/10.1016/j.jprot.2016.03.005
Zhu A, Li X, Wu H, Miao Z, Yuan F, Zhang F, et al. Molecular mechanism of SSFA2 deletion inhibiting cell proliferation and promoting cell apoptosis in glioma. Pathol Res Pract 2019;215:600-6. DOI: https://doi.org/10.1016/j.prp.2018.12.035
Zhu L, Zhang L, Tang Y, Zhang F, Wan C, Xu L, et al. MicroRNA-363-3p inhibits tumor cell proliferation and invasion in oral squamous cell carcinoma cell lines by targeting SSFA2. Exp Ther Med 2021;21:549. DOI: https://doi.org/10.3892/etm.2021.9981

How to Cite

Wang, W., Yi, J., Dong, D., Mao, W., Wang, X., & Yan, Z. (2021). miRNA-877-5p inhibits malignant progression of prostate cancer by directly targeting SSFA2. European Journal of Histochemistry, 65(3). https://doi.org/10.4081/ejh.2021.3243