See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Downregulation of Williams syndrome transcription factor (WSTF) suppresses glioblastoma cell growth and invasion by inhibiting PI3K/AKT signal pathway
Williams syndrome transcription factor (WSTF) participates in diverse cellular processes, including tumor cell proliferation and migration. However, the function of WSTF in glioblastoma (GBM) remains unknown. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) datasets showed that WSTF was up-regulated in GBM tissues. Moreover, WSTF was also increased in the GBM cells. pcDNA-mediated over-expression of WSTF contributed to cell proliferation and invasion of GBM cells, while GBM cell proliferation and invasion were suppressed by shRNA-mediated silencing of WSTF. Additionally, GBM cell apoptosis was reduced by over-expression of WSTF accompanied by decrease in Bax and cleaved caspase-3, while promoted by silencing of WSTF with increase in Bax and cleaved caspase-3. Protein expression of AKT phosphorylation was enhanced by WSTF over-expression while reduced by WSTF silencing. Inhibitor of phosphatidylinositol 3 kinase attenuated WSTF over-expression-induced increase in GBM cell proliferation and invasion. In conclusion, WSTF contributed to GBM cell growth and invasion through activation of PI3K/AKT pathway.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- N/A
- Publisher
- PAGEPress Publications, Pavia, Italy
Citations
10.3389/fonc.2023.1007198
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.