Sporadic Creutzfeldt-Jakob disease: Real-Time Quaking Induced Conversion (RT-QuIC) assay represents a major diagnostic advance

Submitted: 29 June 2021
Accepted: 7 September 2021
Published: 15 October 2021
Abstract Views: 1265
PDF: 704
HTML: 24
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare and fatal neurodegenerative disorder with an incidence of 1.5 to 2 cases per million population/year. The disease is caused by a proteinaceous infectious agent, named prion (or PrPSc), which arises from the conformational conversion of the cellular prion protein (PrPC). Once formed, PrPSc interacts with the normally folded PrPC coercing it to undergo similar structural rearrangement. The disease is highly heterogeneous from a clinical and neuropathological point of view. The origin of this variability lies in the aberrant structures acquired by PrPSc. At least six different sCJD phenotypes have been described and each of them is thought to be caused by a peculiar PrPSc strain. Definitive sCJD diagnosis requires brain analysis with the aim of identifying intracerebral accumulation of PrPSc which currently represents the only reliable biomarker of the disease. Clinical diagnosis of sCJD is very challenging and is based on the combination of several clinical, instrumental and laboratory tests representing surrogate disease biomarkers. Thanks to the advent of the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, PrPSc was found in several peripheral tissues of sCJD patients, sometimes even before the clinical onset of the disease. This discovery represents an important step forward for the clinical diagnosis of sCJD. In this manuscript, we present an overview of the current applications and future perspectives of RT-QuIC in the field of sCJD diagnosis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, et al. Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology 2005;64:1586–91. DOI: https://doi.org/10.1212/01.WNL.0000160117.56690.B2
Imran M, Mahmood S. An overview of human prion diseases. Virol J 2011;8:559. DOI: https://doi.org/10.1186/1743-422X-8-559
Heidenhain A. [Klinische und anatomische Untersuchungen über eine eigenartige organische Erkrankung des Zentralnervensystems im Praesenium].[Article in German]. Z Gesamte Neurol Psy 1929;118:49–114. DOI: https://doi.org/10.1007/BF02892896
Mittal M, Hammond N, Husmann K, Lele A, Pasnoor M. Creutzfeldt-Jakob disease presenting as bulbar palsy. Muscle Nerve 2010;42:833–5. DOI: https://doi.org/10.1002/mus.21849
Alema G, Bignami A. [Subacute degenerative presenile polioencephalopathy with akinetic stupor and decorticate rigidity with myoclonus (“myoclonic” variety of the Jakob-Creutzfeld disease)].[Article in Italian]. Riv Sper Freniatr Med Leg Alien Ment 1959;83:S1485–623.
Nowacki P, Kulczycki J, Narolewska A, Grzelec H. Amyotrophic form of Creutzfeldt-Jakob disease with rapid course in 82-year-old man. Folia Neuropathol 2000;38:161–3.
Stahl N. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987;51:229–40. DOI: https://doi.org/10.1016/0092-8674(87)90150-4
Castle AR, Gill AC. Physiological functions of the cellular prion protein. Front Mol Biosci 2017;4:19. DOI: https://doi.org/10.3389/fmolb.2017.00019
Turk E, Teplow DB, Hood LE, Prusiner SB. Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 1988;176:21–30. DOI: https://doi.org/10.1111/j.1432-1033.1988.tb14246.x
Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol 1989;63:175–81. DOI: https://doi.org/10.1128/jvi.63.1.175-181.1989
Bate C, Nolan W, McHale-Owen H, Williams A. Sialic acid within the glycosylphosphatidylinositol anchor targets the cellular prion protein to synapses. J Biol Chem 2016;291:17093–101. DOI: https://doi.org/10.1074/jbc.M116.731117
Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, et al. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci USA 1999;96:13044–9. DOI: https://doi.org/10.1073/pnas.96.23.13044
Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SBH, Aebersold R, et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985;40:735–46. DOI: https://doi.org/10.1016/0092-8674(85)90333-2
Parchi P, Strammiello R, Notari S, Giese A, Langeveld JPM, Ladogana A, et al. Incidence and spectrum of sporadic Creutzfeldt–Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types: an updated classification. Acta Neuropathol 2009;118:659–71. DOI: https://doi.org/10.1007/s00401-009-0585-1
Soto C, Satani N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med 2011;17:14–24. DOI: https://doi.org/10.1016/j.molmed.2010.09.001
Prusiner SB. Prions. Proc Natl Acad Sci USA 1998;95:13363–83. DOI: https://doi.org/10.1073/pnas.95.23.13363
Soto C. Diagnosing prion diseases: needs, challenges and hopes. Nat Rev Microbiol 2004;2:809–19. DOI: https://doi.org/10.1038/nrmicro1003
Morales R, Hu PP, Duran-Aniotz C, Moda F, Diaz-Espinoza R, Chen B, et al. Strain-dependent profile of misfolded prion protein aggregates. Sci Rep 2016;6:20526. DOI: https://doi.org/10.1038/srep20526
Rossi M, Baiardi S, Parchi P. Understanding prion strains: Evidence from studies of the disease forms affecting humans. Viruses 2019;11:309. DOI: https://doi.org/10.3390/v11040309
Morales R, Abid K, Soto C. The prion strain phenomenon: Molecular basis and unprecedented features. Biochim Biophys Acta 2007;1772:681–91. DOI: https://doi.org/10.1016/j.bbadis.2006.12.006
Zafar S, Younas N, Shafiq M, Zerr I. Prion protein strain diversity and disease pathology. in: prions - Some physiological and pathophysiological aspects IntechOpen; 2019. DOI: https://doi.org/10.5772/intechopen.80702
Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 1999;46:224–33. DOI: https://doi.org/10.1002/1531-8249(199908)46:2<224::AID-ANA12>3.0.CO;2-W
Hosszu LLP, Jackson GS, Trevitt CR, Jones S, Batchelor M, Bhelt D, et al. The residue 129 polymorphism in human prion protein does not confer susceptibility to Creutzfeldt-Jakob disease by altering the structure or global stability of PrPc. J Biol Chem 2004; 279:28515-21. DOI: https://doi.org/10.1074/jbc.M313762200
Safar JG. Molecular pathogenesis of sporadic prion diseases in man. Prion 2012;6:108–15. DOI: https://doi.org/10.4161/pri.18666
Kobayashi A, Iwasaki Y, Otsuka H, Yamada M, Yoshida M, Matsuura Y, et al. Deciphering the pathogenesis of sporadic Creutzfeldt-Jakob disease with codon 129 M/V and type 2 abnormal prion protein. Acta Neuropathol Commun 2013;1:74. DOI: https://doi.org/10.1186/2051-5960-1-74
Kobayashi A, Teruya K, Matsuura Y, Shirai T, Nakamura Y, Yamada M, et al. The influence of PRNP polymorphisms on human prion disease susceptibility: an update. Acta Neuropathol 2015:130:159-70. DOI: https://doi.org/10.1007/s00401-015-1447-7
Uro-Coste E, Cassard H, Simon S, Lugan S, Bilheude JM, Perret-Liaudet A, et al. Beyond PrPres type 1/type 2 dichotomy in Creutzfeldt-Jakob disease. PLoS Pathog 2008;4:e1000029. DOI: https://doi.org/10.1371/journal.ppat.1000029
Cassard H, Huor A, Espinosa JC, Douet JY, Lugan S, Aron N, et al. Prions from sporadic Creutzfeldt-Jakob disease patients propagate as strain mixtures. MBio 2020;11:e00393-20. DOI: https://doi.org/10.1128/mBio.00393-20
Puoti G, Giaccone G, Rossi G, Canciani B, Bugiani O, Tagliavini F. Sporadic Creutzfeldt-Jakob disease: Co-occurrence of different types of PrPSc in the same brain. Neurology 1999;53:2173-6. DOI: https://doi.org/10.1212/WNL.53.9.2173
Zerr I, Schulz‐Schaeffer WJ, Giese A, Bodemer M, Schröter A, Henkel K, et al. Current clinical diagnosis in Creutzfeldt‐Jakob disease: Identification of uncommon variants. Ann Neurol 2000;48:323-9. DOI: https://doi.org/10.1002/1531-8249(200009)48:3<323::AID-ANA6>3.0.CO;2-5
Parchi P, de Boni L, Saverioni D, Cohen ML, Ferrer I, Gambetti P, et al. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 2012;124:517–29. DOI: https://doi.org/10.1007/s00401-012-1002-8
Collins SJ. Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain 2006;129:2278–87. DOI: https://doi.org/10.1093/brain/awl159
Baiardi S, Magherini A, Capellari S, Redaelli V, Ladogana A, Rossi M, et al. Towards an early clinical diagnosis of sporadic CJD VV2 (ataxic type). J Neurol Neurosurg Psychiatry 2017;88:764–72. DOI: https://doi.org/10.1136/jnnp-2017-315942
Parchi P, Capellari S, Chin S, Schwarz HB, Schecter NP, Butts JD, et al. A subtype of sporadic prion disease mimicking fatal familial insomnia. Neurology 1999;52:1757-63. DOI: https://doi.org/10.1212/WNL.52.9.1757
Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 2012;11:618–28. DOI: https://doi.org/10.1016/S1474-4422(12)70063-7
Scaravilli F, Cordery RJ, Kretzschmar H, Gambetti P, Brink B, Fritz V, et al. Sporadic fatal insomnia: A case study. Ann Neurol 2000;48:665–9. DOI: https://doi.org/10.1002/1531-8249(200010)48:4<665::AID-ANA15>3.0.CO;2-D
Krasnianski A, Meissner B, Schulz-Schaeffer W, Kallenberg K, Bartl M, Heinemann U, et al. Clinical features and diagnosis of the MM2 Cortical subtype of sporadic Creutzfeldt-Jakob disease. Arch Neurol 2006;63:876. DOI: https://doi.org/10.1001/archneur.63.6.876
Mead S, Rudge P. CJD mimics and chameleons. Pract Neurol 2017;17:113–21. DOI: https://doi.org/10.1136/practneurol-2016-001571
Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009;132:2659–68. DOI: https://doi.org/10.1093/brain/awp191
Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro Cuesta J, Knight RSG, et al. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 2000;55:811–5. DOI: https://doi.org/10.1212/WNL.55.6.811
Collie DA, Sellar RJ, Zeidler M, Colchester ACF, Knight R, Will RG. MRI of Creutzfeldt–Jakob disease: Imaging features and recommended MRI protocol. Clin Radiol 2001;56:726–39. DOI: https://doi.org/10.1053/crad.2001.0771
Karch A, Zerr I. A comparison of tau and 14-3-3 protein in the diagnosis of Creutzfeldt-Jakob disease. Neurology 2013;80:2081. DOI: https://doi.org/10.1212/01.wnl.0000431029.13491.59c
Blennow K, Johansson A, Zetterberg H. Diagnostic value of 14-3-3β immunoblot and T-tau/P-tau ratio in clinically suspected Creutzfeldt-Jakob disease. Int J Mol Med 2005;16:1147-9. DOI: https://doi.org/10.3892/ijmm.16.6.1147
Coulthart MB, Jansen GH, Olsen E, Godal DL, Connolly T, Choi BCK, et al. Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada: a 6-year prospective study. BMC Neurol 2011;11:133. DOI: https://doi.org/10.1186/1471-2377-11-133
Chohan G, Pennington C, Mackenzie JM, Andrews M, Everington D, Will RG, et al. The role of cerebrospinal fluid 14-3-3 and other proteins in the diagnosis of sporadic Creutzfeldt-Jakob disease in the UK: a 10-year review. J Neurol Neurosurg Psychiatry 2010;81:1243–8. DOI: https://doi.org/10.1136/jnnp.2009.197962
Bahl JMC, Heegaard NHH, Falkenhorst G, Laursen H, Høgenhaven H, Mølbak K, et al. The diagnostic efficiency of biomarkers in sporadic Creutzfeldt-Jakob disease compared to Alzheimer’s disease. Neurobiol Aging 2009;30:1834–41. DOI: https://doi.org/10.1016/j.neurobiolaging.2008.01.013
Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Saanchez-Valle R, Mitrovaa E, et al. CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 2006;67:637–43. DOI: https://doi.org/10.1212/01.wnl.0000230159.67128.00
Stoeck K, Sanchez-Juan P, Gawinecka J, Green A, Ladogana A, Pocchiari M, et al. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 2012;135:3051–61. DOI: https://doi.org/10.1093/brain/aws238
Satoh J, Kurohara K, Yukitake M, Kuroda Y. The 14-3-3 protein detectable in the cerebrospinal fluid of patients with prion-unrelated neurological diseases is expressed constitutively in neurons and glial cells in culture. Eur Neurol 1999;41:216–25. DOI: https://doi.org/10.1159/000008054
Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 1998;43:32–40. DOI: https://doi.org/10.1002/ana.410430109
Chapman T, McKeel DW, Morris JC. Misleading results with the 14-3-3 assay for the diagnosis of Creutzfeldt-Jakob disease. Neurology 2000;55:1396–8. DOI: https://doi.org/10.1212/WNL.55.9.1396
Muayqil T, Gronseth G, Camicioli R. Evidence-based guideline: Diagnostic accuracy of CSF 14-3-3 protein in sporadic Creutzfeldt-Jakob disease: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2012;79:1499–506. DOI: https://doi.org/10.1212/WNL.0b013e31826d5fc3
Hamlin C, Puoti G, Berri S, Sting E, Harris C, Cohen M, et al. A comparison of tau and 14-3-3 protein in the diagnosis of Creutzfeldt-Jakob disease. Neurology 2012;79:547–52. DOI: https://doi.org/10.1212/WNL.0b013e318263565f
Forner SA, Takada LT, Bettcher BM, Lobach I V., Tartaglia MC, Torres-Chae C, et al. Comparing CSF biomarkers and brain MRI in the diagnosis of sporadic Creutzfeldt-Jakob disease. Neurol Clin Pract 2015;5:116–25. DOI: https://doi.org/10.1212/CPJ.0000000000000111
Abu-Rumeileh S, Baiardi S, Polischi B, Mammana A, Franceschini A, Green A, et al. Diagnostic value of surrogate CSF biomarkers for Creutzfeldt–Jakob disease in the era of RT-QuIC. J Neurol 2019;266:3136–43. DOI: https://doi.org/10.1007/s00415-019-09537-0
Lattanzio F, Abu-Rumeileh S, Franceschini A, Kai H, Amore G, Poggiolini I, et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 2017;133:559–78. DOI: https://doi.org/10.1007/s00401-017-1683-0
Blennow K, Diaz-Lucena D, Zetterberg H, Villar-Pique A, Karch A, Vidal E, et al. CSF neurogranin as a neuronal damage marker in CJD: a comparative study with AD. J Neurol Neurosurg Psychiatry 2019;90:846–53. DOI: https://doi.org/10.1136/jnnp-2018-320155
Skillbäck T, Rosén C, Asztely F, Mattsson N, Blennow K, Zetterberg H. Diagnostic Performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease. JAMA Neurol 2014;71:476. DOI: https://doi.org/10.1001/jamaneurol.2013.6455
Baldeiras IE, Ribeiro MH, Pacheco P, Machado Á, Santana I, Cunha L, et al. Diagnostic value of CSF protein profile in a Portuguese population of sCJD patients. J Neurol 2009;256:1540–50. DOI: https://doi.org/10.1007/s00415-009-5160-0
Skinningsrud A, Stenset V, Gundersen AS, Fladby T. Cerebrospinal fluid markers in Creutzfeldt-Jakob disease. Cerebrospinal Fluid Res 2008;5:14. DOI: https://doi.org/10.1186/1743-8454-5-14
Kovacs GG, Andreasson U, Liman V, Regelsberger G, Lutz MI, Danics K, et al. Plasma and cerebrospinal fluid tau and neurofilament concentrations in rapidly progressive neurological syndromes: a neuropathology-based cohort. Eur J Neurol 2017;24:1326-e77. DOI: https://doi.org/10.1111/ene.13389
Zerr I, Schmitz M, Karch A, Villar-Piqué A, Kanata E, Golanska E, et al. Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: Evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimer’s Dement 2018;14:751–63. DOI: https://doi.org/10.1016/j.jalz.2017.12.008
Antonell A, Tort‐Merino A, Ríos J, Balasa M, Borrego‐Écija S, Auge JM, et al. Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimer’s Dement 2020;16:262–72. DOI: https://doi.org/10.1016/j.jalz.2019.09.001
Abu-Rumeileh S, Capellari S, Stanzani-Maserati M, Polischi B, Martinelli P, Caroppo P, et al. The CSF neurofilament light signature in rapidly progressive neurodegenerative dementias. Alzheimers Res Ther 2018;10:3. DOI: https://doi.org/10.1186/s13195-017-0331-1
Kanata E, Golanska E, Villar-Piqué A, Karsanidou A, Dafou D, Xanthopoulos K, et al. Cerebrospinal fluid neurofilament light in suspected sporadic Creutzfeldt-Jakob disease. J Clin Neurosci 2019;60:124–7. DOI: https://doi.org/10.1016/j.jocn.2018.09.031
Steinacker P, Blennow K, Halbgebauer S, Shi S, Ruf V, Oeckl P, et al. Neurofilaments in blood and CSF for diagnosis and prediction of onset in Creutzfeldt-Jakob disease. Sci Rep 2016;6:38737. DOI: https://doi.org/10.1038/srep38737
Thompson AGB, Luk C, Heslegrave AJ, Zetterberg H, Mead SH, Collinge J, et al. Neurofilament light chain and tau concentrations are markedly increased in the serum of patients with sporadic Creutzfeldt-Jakob disease, and tau correlates with rate of disease progression. J Neurol Neurosurg Psychiatry 2018;89:955–61. DOI: https://doi.org/10.1136/jnnp-2017-317793
Gao L, Tang H, Nie K, Wang L, Zhao J, Gan R, et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: a systematic review and meta-analysis. Int J Neurosci 2015;125:645–54. DOI: https://doi.org/10.3109/00207454.2014.961454
Bousiges O, Philippi N, Lavaux T, Perret-Liaudet A, Lachmann I, Schaeffer-Agalède C, et al. Differential diagnostic value of total alpha-synuclein assay in the cerebrospinal fluid between Alzheimer’s disease and dementia with Lewy bodies from the prodromal stage. Alzheimers Res Ther 2020;12:120. DOI: https://doi.org/10.1186/s13195-020-00684-5
Llorens F, Kruse N, Karch A, Schmitz M, Zafar S, Gotzmann N, et al. Validation of α-synuclein as a CSF biomarker for sporadic Creutzfeldt-Jakob disease. Mol Neurobiol 2018;55:2249–57. DOI: https://doi.org/10.1007/s12035-017-0479-5
Llorens F, Kruse N, Schmitz M, Gotzmann N, Golanska E, Thüne K, et al. Evaluation of α-synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases. Alzheimer’s Dement 2017;13:710–9. DOI: https://doi.org/10.1016/j.jalz.2016.09.013
Schmitz M, Villar-Piqué A, Llorens F, Gmitterová K, Hermann P, Varges D, et al. Cerebrospinal fluid total and phosphorylated α-synuclein in patients with Creutzfeldt–Jakob disease and synucleinopathy. Mol Neurobiol 2019;56:3476–83. DOI: https://doi.org/10.1007/s12035-018-1313-4
Aksamit AJ, Preissner CM, Homburger HA. Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease. Neurology 2001;57:728–30. DOI: https://doi.org/10.1212/WNL.57.4.728
Zerr I, Bodemer M, Räcker S, Grosche S, Poser S, Weber T, et al. Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt-Jakob disease. Lancet 1995;345:1609–10. DOI: https://doi.org/10.1016/S0140-6736(95)90118-3
Otto M, Wiltfang J, Schutz E, Zerr I, Otto A, Pfahlberg A, et al. Diagnosis of Creutzfeldt-Jakob disease by measurement of S100 protein in serum: prospective case-control study. BMJ 1998;316:577–82. DOI: https://doi.org/10.1136/bmj.316.7131.577
Vanni S, Moda F, Zattoni M, Bistaffa E, De Cecco E, Rossi M, et al. Differential overexpression of SERPINA3 in human prion diseases. Sci Rep 2017;7:15637. DOI: https://doi.org/10.1038/s41598-017-15778-8
Le Pera M, Urso E, Sprovieri T, Bossio S, Aguglia U, Manna I, et al. Contribution of cerebrospinal fluid thymosin β4 levels to the clinical differentiation of Creutzfeldt-Jakob disease. Arch Neurol 2012;69:868-72. DOI: https://doi.org/10.1001/archneurol.2011.3558
Barria MA, Libori A, Mitchell G, Head MW. Susceptibility of human prion protein to conversion by chronic wasting disease prions. Emerg Infect Dis 2018;24:1482–9. DOI: https://doi.org/10.3201/eid2408.161888
Moda F, Gambetti P, Notari S, Concha-Marambio L, Catania M, Park K-W, et al. Prions in the urine of patients with variant Creutzfeldt–Jakob disease. N Engl J Med 2014;371:530-9. DOI: https://doi.org/10.1056/NEJMoa1404401
Concha-Marambio L, Pritzkow S, Moda F, Tagliavini F, Ironside JW, Schulz PE, et al. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Sci Transl Med 2016;8:370ra183. DOI: https://doi.org/10.1126/scitranslmed.aaf6188
Bélondrade M, Nicot S, Mayran C, Bruyere-Ostells L, Almela F, Di Bari MA, et al. Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt–Jakob disease prions is strongly seed and substrate dependent. Sci Rep 2021;11:4058. DOI: https://doi.org/10.1038/s41598-021-83630-1
Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 2011;17:175-8. DOI: https://doi.org/10.1038/nm.2294
Franceschini A, Baiardi S, Hughson AG, McKenzie N, Moda F, Rossi M, et al. High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci Rep 2017;7:10655. DOI: https://doi.org/10.1038/s41598-017-10922-w
Orrú CD, Bongianni M, Tonoli G, Ferrari S, Hughson AG, Groveman BR, et al. A test for Creutzfeldt–Jakob disease using nasal brushings. N Engl J Med 2014;371:519–29. DOI: https://doi.org/10.1056/NEJMoa1315200
Mammana A, Baiardi S, Rossi M, Franceschini A, Donadio V, Capellari S, et al. Detection of prions in skin punch biopsies of Creutzfeldt-akob disease patients. Ann Clin Transl Neurol 2020;7:559–64. DOI: https://doi.org/10.1002/acn3.51000
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, et al. Cell-free amplification of prions: Where do we stand? Prog Mol Biol Transl Sci 2020;175:325–58. DOI: https://doi.org/10.1016/bs.pmbts.2020.08.005
Schmitz M, Cramm M, Llorens F, Müller-Cramm D, Collins S, Atarashi R, et al. The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 2016;11:2233–42. DOI: https://doi.org/10.1038/nprot.2016.120
McGuire LI, Peden AH, Orrú CD, Wilham JM, Appleford NE, Mallinson G, et al. Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 2012;72:278–85. DOI: https://doi.org/10.1002/ana.23589
Orrú C, Hughson A, Groveman B, Campbell K, Anson K, Manca M, et al. Factors that improve RT-QuIC detection of prion seeding activity. Viruses 2016;8:140. DOI: https://doi.org/10.3390/v8050140
Candelise N, Baiardi S, Franceschini A, Rossi M, Parchi P. Towards an improved early diagnosis of neurodegenerative diseases: the emerging role of in vitro conversion assays for protein amyloids. Acta Neuropathol Commun 2020;8:117. DOI: https://doi.org/10.1186/s40478-020-00990-x
Shaked GM, Fridlander G, Meiner Z, Taraboulos A, Gabizon R. Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity. J Biol Chem 1999;274:17981–6. DOI: https://doi.org/10.1074/jbc.274.25.17981
McGuire LI, Poleggi A, Poggiolini I, Suardi S, Grznarova K, Shi S, et al. Cerebrospinal fluid real-time quaking-induced conversion is a robust and reliable test for sporadic creutzfeldt-jakob disease: An international study. Ann Neurol 2016;80:160–5. DOI: https://doi.org/10.1002/ana.24679
Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B, et al. Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob disease. Mol Neurobiol 2016;53:1896–904. DOI: https://doi.org/10.1007/s12035-015-9133-2
Groveman BR, Orrú CD, Hughson AG, Bongianni M, Fiorini M, Imperiale D, et al. Extended and direct evaluation of RT-QuIC assays for Creutzfeldt-Jakob disease diagnosis. Ann Clin Transl Neurol 2017;4:139–44. DOI: https://doi.org/10.1002/acn3.378
Park J-H, Choi Y-G, Lee Y-J, Park S-J, Choi H-S, Choi K-C, et al. Real-Time Quaking-induced conversion analysis for the diagnosis of sporadic Creutzfeldt-Jakob disease in Korea. J Clin Neurol 2016;12:101. DOI: https://doi.org/10.3988/jcn.2016.12.1.101
Bongianni M, Orrù C, Groveman BR, Sacchetto L, Fiorini M, Tonoli G, et al. Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 2017;74:15-62. DOI: https://doi.org/10.1001/jamaneurol.2016.4614
Rhoads DD, Wrona A, Foutz A, Blevins J, Glisic K, Person M, et al. Diagnosis of prion diseases by RT-QuIC results in improved surveillance. Neurology 2020;95:e1017–26. DOI: https://doi.org/10.1212/WNL.0000000000010086
Xiao K, Yang XH, Zou WQ, Dong XP, Shi Q. Assessment of the sensitivity and specificity of the established real-time quaking-induced conversion (RT-QuIC) technique in Chinese CJD surveillance. Biomed Environ Sci 2020;33:620–2.
Orrú CD, Groveman BR, Foutz A, Bongianni M, Cardone F, McKenzie N, et al. Ring trial of 2nd generation RT‐QuIC diagnostic tests for sporadic CJD. Ann Clin Transl Neurol 2020;7:2262–71. DOI: https://doi.org/10.1002/acn3.51219
Fiorini M, Iselle G, Perra D, Bongianni M, Capaldi S, Sacchetto L, et al. High diagnostic accuracy of RT-QuIC assay in a prospective study of patients with suspected sCJD. Int J Mol Sci 2020;21:880. DOI: https://doi.org/10.3390/ijms21030880
Hermann P, Laux M, Glatzel M, Matschke J, Knipper T, Goebel S, et al. Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance. Neurology 2018;91:e331–8. DOI: https://doi.org/10.1212/WNL.0000000000005860
Redaelli V, Bistaffa E, Zanusso G, Salzano G, Sacchetto L, Rossi M, et al. detection of prion seeding activity in the olfactory mucosa of patients with fatal familial insomnia. Sci Rep 2017;7:46269. DOI: https://doi.org/10.1038/srep46269
Orrú CD, Groveman BR, Raymond LD, Hughson AG, Nonno R, Zou W, et al. Bank vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains. Supattapone S, editor. PLoS Pathog 2015;11:e1004983. DOI: https://doi.org/10.1371/journal.ppat.1004983
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, et al. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019;9:18595. DOI: https://doi.org/10.1038/s41598-019-55078-x
Orrú CD, Yuan J, Appleby BS, Li B, Li Y, Winner D, et al. Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci Transl Med 2017;9:eaam7785. DOI: https://doi.org/10.1126/scitranslmed.aam7785
Orrù CD, Soldau K, Cordano C, Llibre-Guerra J, Green AJ, Sanchez H, et al. Prion seeds distribute throughout the eyes of sporadic Creutzfeldt-Jakob disease patients. MBio 2018;9:e02095-18. DOI: https://doi.org/10.1128/mBio.02095-18
Foutz A, Appleby BS, Hamlin C, Liu X, Yang S, Cohen Y, et al. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann Neurol 2017;81:79–92. DOI: https://doi.org/10.1002/ana.24833
Piconi G, Peden AH, Barria MA, Green AJE. Epitope mapping of the protease resistant products of RT-QuIC does not allow the discrimination of sCJD subtypes. PLoS One 2019;14:e0218509. DOI: https://doi.org/10.1371/journal.pone.0218509
Hermann P, Appleby B, Brandel J-P, Caughey B, Collins S, Geschwind MD, et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol 2021;20:235-46. DOI: https://doi.org/10.1016/S1474-4422(20)30477-4
Rudge P, Hyare H, Green A, Collinge J, Mead S. Imaging and CSF analyses effectively distinguish CJD from its mimics. J Neurol Neurosurg Psychiatry 2018;89:461–6. DOI: https://doi.org/10.1136/jnnp-2017-316853
Hayashi Y, Iwasaki Y, Yoshikura N, Asano T, Mimuro M, Kimura A, et al. An autopsy-verified case of steroid-responsive encephalopathy with convulsion and a false-positive result from the real-time quaking-induced conversion assay. Prion 2017;11:284–92. DOI: https://doi.org/10.1080/19336896.2017.1345416
Hoover CE, Davenport KA, Henderson DM, Pulscher LA, Mathiason CK, Zabel MD, et al. detection and quantification of cwd prions in fixed paraffin embedded tissues by real-time quaking-induced conversion. Sci Rep 2016;6:25098. DOI: https://doi.org/10.1038/srep25098
Green AJE. RT-QuIC: a new test for sporadic CJD. Pract Neurol 2019;19:49–55. DOI: https://doi.org/10.1136/practneurol-2018-001935
Cramm M, Schmitz M, Karch A, Zafar S, Varges D, Mitrova E, et al. Characteristic CSF prion seeding efficiency in humans with prion diseases. Mol Neurobiol 2015;51:396-405. DOI: https://doi.org/10.1007/s12035-014-8709-6
Orrú CD, Groveman BR, Hughson AG, Zanusso G, Coulthart MB, Caughey B. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. MBio 2015;6:e02451-14. DOI: https://doi.org/10.1128/mBio.02451-14
Baiardi S, Redaelli V, Ripellino P, Rossi M, Franceschini A, Moggio M, et al. Prion-related peripheral neuropathy in sporadic Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2019;90:424–7. DOI: https://doi.org/10.1136/jnnp-2018-319221
Satoh K, Fuse T, Nonaka T, Dong T, Takao M, Nakagaki T, et al. Postmortem quantitative analysis of prion seeding activity in the digestive system. Molecules 2019;24:4601. DOI: https://doi.org/10.3390/molecules24244601

How to Cite

Cazzaniga, F. A., Bistaffa, E., De Luca, C. M. G. ., Bufano, G., Indaco, A., Giaccone, G., & Moda, F. (2021). Sporadic Creutzfeldt-Jakob disease: Real-Time Quaking Induced Conversion (RT-QuIC) assay represents a major diagnostic advance. European Journal of Histochemistry, 65(s1). https://doi.org/10.4081/ejh.2021.3298

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.