Evaluation of biocompatibility, osteointegration and biomechanical properties of the new Calcemex® cement: An in vivo study

Submitted: 4 August 2021
Accepted: 11 January 2022
Published: 27 January 2022
Abstract Views: 1013
PDF: 402
HTML: 19
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The mixture of polymethylmethacrylate (PMMA) and β-tricalciumphospate (β-TCP) is the most widely used bone graft. Common features of bone cement are the biocompatibility, bioactivity, mechanical stability and ability to fuse with the host's bone tissue. However, there are still few studies that have evaluated these characteristics in vivo. Our study aims to acquire these parameters, using an animal model with functional characteristics similar to those of humans. The analyzed cement is Calcemex®, evaluated both in compact and fluid formulation. The chosen animal models were 5 pigs, treated with femoral and tibial implants of Calcemex® samples. After one year, the pigs were sacrificed and the specimens explanted for morphological, histological, ultrastructural and mechanical evaluations. For both formulations, the investigation highlighted the absence of foreign body reactions in the host, the histological integration with the surrounding tissues and the preservation of mechanical compression resistance.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Webb JCJ, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br 2007;89:851–7. DOI: https://doi.org/10.1302/0301-620X.89B7.19148
De Long WGJ, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007;89:649–58. DOI: https://doi.org/10.2106/JBJS.F.00465
Blokhuis TJ, Arts JJC. Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury 2011;42:S26-9. DOI: https://doi.org/10.1016/j.injury.2011.06.010
Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001;83:s98-103. DOI: https://doi.org/10.2106/00004623-200100022-00007
Frazer RQ, Byron RT, Osborne PB, West KP. PMMA: an essential material in medicine and dentistry. J Long Term Eff Med Implants 2005;15:629–39. DOI: https://doi.org/10.1615/JLongTermEffMedImplants.v15.i6.60
Dall’Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P. Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury 2010;41:1150–5. DOI: https://doi.org/10.1016/j.injury.2010.09.026
Harrington KD. The use of methylmethacrylate for vertebral-body replacement and anterior stabilization of pathological fracture-dislocations of the spine due to metastatic malignant disease. J Bone Joint Surg Am 1981;63:36-46. DOI: https://doi.org/10.2106/00004623-198163010-00005
Heini PF, Wälchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur spine J 2000;9:445-50. DOI: https://doi.org/10.1007/s005860000182
Thillainadesan J, Schlaphoff G, Gibson KA, Hassett GM, McNeil HP. Long-term outcomes of vertebroplasty for osteoporotic compression fractures. J Med Imaging Radiat Oncol 2010;54:307–14. DOI: https://doi.org/10.1111/j.1754-9485.2010.02176.x
Gibon E, Córdova LA, Lu L, Lin T-H, Yao Z, Hamadouche M, et al. The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater 2017;105:1685-91. DOI: https://doi.org/10.1002/jbm.b.33676
O’Dowd-Booth CJ, White J, Smitham P, Khan W, Marsh DR. Bone cement: perioperative issues, orthopaedic applications and future developments. J Perioper Pract 2011;21:304-8. DOI: https://doi.org/10.1177/175045891102100902
Magnan B, Bondi M, Maluta T, Samaila E, Schirru L, Dall’Oca C. Acrylic bone cement: current concept review. Musculoskelet Surg 2013;97:93-100. DOI: https://doi.org/10.1007/s12306-013-0293-9
Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury 2011;42:S16-21. DOI: https://doi.org/10.1016/j.injury.2011.06.199
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011;9:66. DOI: https://doi.org/10.1186/1741-7015-9-66
Handoll HHG, Watts AC. Bone grafts and bone substitutes for treating distal radial fractures in adults. Cochrane Database Syst Rev 2008;2:CD006836. DOI: https://doi.org/10.1002/14651858.CD006836.pub2
Lewis G. Viscoelastic properties of injectable bone cements for orthopaedic applications: state-of-the-art review. J Biomed Mater Res B Appl Biomater 2011;98:171-91. DOI: https://doi.org/10.1002/jbm.b.31835
Provenzano MJ, Murphy KPJ, Riley LH 3rd. Bone cements: review of their physiochemical and biochemical properties in percutaneous vertebroplasty. AJNR Am J Neuroradiol 2004;25:1286-90.
Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 2013;95-B:583-97. DOI: https://doi.org/10.1302/0301-620X.95B5.30286
Dall’Oca C, Maluta T, Cavani F, Morbioli GP, Bernardi P, Sbarbati A, et al. The biocompatibility of porous vs non-porous bone cements: a new methodological approach. Eur J Histochem 2014;58:2255. DOI: https://doi.org/10.4081/ejh.2014.2255
Dall’Oca C, Maluta T, Micheloni GM, Cengarle M, Morbioli G, Bernardi P, et al. The biocompatibility of bone cements: progress in methodological approach. Eur J Histochem 2017;61:2673. DOI: https://doi.org/10.4081/ejh.2017.2673
Wu C-C, Hsu L-H, Sumi S, Yang K-C, Yang S-H. Injectable and biodegradable composite bone filler composed of poly(propylene fumarate) and calcium phosphate ceramic for vertebral augmentation procedure: An in vivo porcine study. J Biomed Mater Res B Appl Biomater 2017;105:2232-43. DOI: https://doi.org/10.1002/jbm.b.33678
von Rechenberg B, Génot OR, Nuss K, Galuppo L, Fulmer M, Jacobson E, et al. Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep. Eur J Pharm Biopharm 2013;85:130-8. DOI: https://doi.org/10.1016/j.ejpb.2013.04.013
Goto K, Shinzato S, Fujibayashi S, Tamura J, Kawanabe K, Hasegawa S, et al. The biocompatibility and osteoconductivity of a cement containing beta-TCP for use in vertebroplasty. J Biomed Mater Res A 2006;78:629-37. DOI: https://doi.org/10.1002/jbm.a.30793
Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM. Acrylic bone cement in total joint arthroplasty: A review. J Orthop Res 2016;34:737-44. DOI: https://doi.org/10.1002/jor.23184

How to Cite

Maluta, T., Lavagnolo, U., Segalla, L., Elena, N., Bernardi, P., Degl’Innocenti, D., … Magnan, B. (2022). Evaluation of biocompatibility, osteointegration and biomechanical properties of the new Calcemex® cement: An <em>in vivo</em> study. European Journal of Histochemistry, 66(1). https://doi.org/10.4081/ejh.2022.3313

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.