Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway

Submitted: 10 February 2022
Accepted: 27 April 2022
Published: 22 June 2022
Abstract Views: 1054
PDF: 793
HTML: 21
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Osteosarcoma (OS) is a kind of malignant tumor originating from mesenchymal tissue Bone mesenchymal stem cells-derived extracellular vesicles (BMSCs-EVs) can play important roles in OS. This study investigated the mechanism of BMSCs-EVs on OS. BMSC surface antigens and adipogenic and osteogenic differentiation were detected by flow cytometry, and oil red O and alizarin red staining. EVs were isolated from BMSCs by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot (WB). miR-206 and neurensin-2 (NRSN2) levels in human osteoblast hFOB 1.19 or OS cells (143B, MG-63, Saos2, HOS) were detected by RT-qPCR. Human OS cells with lower miR-206 levels were selected and treated with BMSCs-EVs or pSUPER-NRSN2. The uptake of EVs by 143B cells, cell proliferation, apoptosis, invasion, and migration were detected by immunofluorescence, 5-ethynyl-2’-deoxyuridine (EdU) and colony formation assays, flow cytometry, scratch test, and transwell assays. The binding sites between miR-206 and NRSN2 were predicted by Starbase database and verified by dual-luciferase assay. The OS xenograft model was established and treated by BMSCs-EVs. Tumor growth rate and volume, cell proliferation, and p-ERK1/2, ERK1/2, and Bcl-xL levels were detected by vernier caliper, immunohistochemistry, and WB. BMSCs-EVs were successfully extracted. miR-206 was diminished and NRSN2 was promoted in OS cells. BMSCs-EVs inhibited proliferation, migration, and invasion, and promoted apoptosis of OS cells. BMSCs-EVs carried miR-206 into OS cells. Inhibition of miR-206 in EVs partially reversed the inhibitory effect of EVs on malignant behaviors of OS cells. miR-206 targeted NRSN2. Overexpression of NRSN2 reversed the inhibitory effect of EVs on OS cells. NRSN2 activated the ERK1/2-Bcl-xL pathway. BMSC-EVs inhibited OS growth in vivo. In summary, BMSC-EVs targeted NRSN2 and inhibited the ERK1/2-Bcl-xL pathway by carrying miR-206 into OS cells, thus inhibiting OS progression.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Hardes J, Gosheger G, Budny T. [Knochensarkome].[Article in German]. Z Orthop Unfall 2018;156:105-24. DOI: https://doi.org/10.1055/s-0043-117905
Gill J, Ahluwalia MK, Geller D, Gorlick R. New targets and approaches in osteosarcoma. Pharmacol Ther 2013;137:89-99. DOI: https://doi.org/10.1016/j.pharmthera.2012.09.003
Mathkour M, Garces J, Beard B, Bartholomew A, Sulaiman OA, Ware ML. Primary high-grade osteosarcoma of the clivus: A case report and literature review. World Neurosurg 2016;89:730.e9-e13. DOI: https://doi.org/10.1016/j.wneu.2016.01.054
Biazzo A, De Paolis M. Multidisciplinary approach to osteosarcoma. Acta Orthop Belg 2016;82:690-8.
Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol 2017;13:357-68. DOI: https://doi.org/10.2217/fon-2016-0261
Saraf AJ, Fenger JM, Roberts RD. Osteosarcoma: Accelerating progress makes for a hopeful future. Front Oncol 2018;8:4. DOI: https://doi.org/10.3389/fonc.2018.00004
Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol 2018;35:69-79. DOI: https://doi.org/10.1016/j.smim.2017.12.003
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem 2019;88:487-514. DOI: https://doi.org/10.1146/annurev-biochem-013118-111902
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res 2020;39:20. DOI: https://doi.org/10.1186/s13046-020-1529-9
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017;174:63-78. DOI: https://doi.org/10.1016/j.pharmthera.2017.02.020
Baassiri A, Nassar F, Mukherji D, Shamseddine A, Nasr R, Temraz S. Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer. Int J Mol Sci 2020;21:1398. DOI: https://doi.org/10.3390/ijms21041398
Lan M, Zhu XP, Cao ZY, Liu JM, Lin Q, Liu ZL. Extracellular vesicles-mediated signaling in the osteosarcoma microenvironment: Roles and potential therapeutic targets. J Bone Oncol 2018;12:101-4. DOI: https://doi.org/10.1016/j.jbo.2018.07.010
Zhang H, Wang J, Ren T, Huang Y, Liang X, Yu Y, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett 2020;490:54-65. DOI: https://doi.org/10.1016/j.canlet.2020.07.008
Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018;67:940-54. DOI: https://doi.org/10.1002/hep.29586
Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer 2018;17:89. DOI: https://doi.org/10.1186/s12943-018-0837-6
Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, et al. miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther 2018;26:1299-312. DOI: https://doi.org/10.1016/j.ymthe.2018.03.009
Ren Z, He M, Shen T, Wang K, Meng Q, Chen X, et al. MiR-421 promotes the development of osteosarcoma by regulating MCPIP1 expression. Cancer Biol Ther 2020;21:231-40. DOI: https://doi.org/10.1080/15384047.2019.1683331
Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, et al. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2019;120:4783-93. DOI: https://doi.org/10.1002/jcb.27857
Wang S, Ma F, Feng Y, Liu T, He S. Role of exosomal miR21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review). Int J Oncol 2020;56:1055-63. DOI: https://doi.org/10.3892/ijo.2020.4992
Zhang W, Wei L, Sheng W, Kang B, Wang D, Zeng H. miR-1225-5p functions as a tumor suppressor in osteosarcoma by targeting Sox9. DNA Cell Biol 2020;39:78-91. DOI: https://doi.org/10.1089/dna.2019.5105
Yan Y, Chang C, Su J, Veno M T, Kjems J. Osteoblastogenesis alters small RNA profiles in EVs derived from bone marrow stem cells (BMSCs) and adipose stem cells (ASCs). Biomedicines 2020;8:387. DOI: https://doi.org/10.3390/biomedicines8100387
Fei D, Sui G, Lu Y, Tan L, Dongxu Z, Zhang K. The long non-coding RNA-ROR promotes osteosarcoma progression by targeting miR-206. J Cell Mol Med 2019;23:1865-72. DOI: https://doi.org/10.1111/jcmm.14087
Pan BL, Tong ZW, Wu L, Pan L, Li JE, Huang YG, et al. Effects of microRNA-206 on osteosarcoma cell proliferation, apoptosis, migration and invasion by targeting ANXA2 through the AKT signaling pathway. Cell Physiol Biochem 2018;45:1410-22. DOI: https://doi.org/10.1159/000487567
Wang Y, Shi S, Zhang Q, Dong H, Zhang J. MicroRNA-206 upregulation relieves circTCF25-induced osteosarcoma cell proliferation and migration. J Cell Physiol 2020. Online ahead of print.
Xu X, Qiu B, Yi P, Li H. Overexpression of miR-206 in osteosarcoma and its associated molecular mechanisms as assessed through TCGA and GEO databases. Oncol Lett 2020;19:1751-58. DOI: https://doi.org/10.3892/ol.2020.11270
Zhang K, Dong C, Chen M, Yang T, Wang X, Gao Y, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics 2020;10:411-25. DOI: https://doi.org/10.7150/thno.33482
Keremu A, Maimaiti X, Aimaiti A, Yushan M, Alike Y, Yilihamu Y, et al. NRSN2 promotes osteosarcoma cell proliferation and growth through PI3K/Akt/MTOR and Wnt/beta-catenin signaling. Am J Cancer Res 2017;7:565-73.
Zhou J, Xu L, Yang P, Lu Y, Lin S, Yuan G. The exosomal transfer of human bone marrow mesenchymal stem cell-derived miR-1913 inhibits osteosarcoma progression by targeting NRSN2. Am J Transl Res 2021;13:10178-92.
Li F, Chen X, Shang C, Ying Q, Zhou X, Zhu R, et al. Bone marrow mesenchymal stem cells-derived extracellular vesicles promote proliferation, invasion and migration of osteosarcoma cells via the lncRNA MALAT1/miR-143/NRSN2/Wnt/beta-catenin axis. Onco Targets Ther 2021;14:737-49. DOI: https://doi.org/10.2147/OTT.S283459
Zhang Z, Zheng Y, Zhu R, Zhu Y, Yao W, Liu W, et al. The ERK/eIF4F/Bcl-XL pathway mediates SGP-2 induced osteosarcoma cells apoptosis in vitro and in vivo. Cancer Lett 2014;352:203-13. DOI: https://doi.org/10.1016/j.canlet.2014.06.015
Sun T, Zhong X, Song H, Liu J, Li J, Leung F, et al. Anoikis resistant mediated by FASN promoted growth and metastasis of osteosarcoma. Cell Death Dis 2019;10:298. DOI: https://doi.org/10.1038/s41419-019-1532-2
Fu Y, Zhang L, Hong Z, Zheng H, Li N, Gao H, et al. Methanolic extract of Pien Tze Huang induces apoptosis signaling in human osteosarcoma MG63 cells via multiple pathways. Molecules 2016;21:283. DOI: https://doi.org/10.3390/molecules21030283
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319:1244-7. DOI: https://doi.org/10.1126/science.1153124
Yue KY, Zhang PR, Zheng MH, Cao XL, Cao Y, Zhang YZ, et al. Neurons can upregulate Cav-1 to increase intake of endothelial cells-derived extracellular vesicles that attenuate apoptosis via miR-1290. Cell Death Dis 2019;10:869. DOI: https://doi.org/10.1038/s41419-019-2100-5
Wang X, Zhao X, Yi Z, Ma B, Wang H, Pu Y, et al. WNT5A promotes migration and invasion of human osteosarcoma cells via SRC/ERK/MMP-14 pathway. Cell Biol Int 2018;42:598-607. DOI: https://doi.org/10.1002/cbin.10936
Bao YP, Yi Y, Peng LL, Fang J, Liu KB, Li WZ, et al. Roles of microRNA-206 in osteosarcoma pathogenesis and progression. Asian Pac J Cancer Prev 2013;14:3751-5. DOI: https://doi.org/10.7314/APJCP.2013.14.6.3751
Ren D, Zheng H, Fei S, Zhao J L. MALAT1 induces osteosarcoma progression by targeting miR-206/CDK9 axis. J Cell Physiol 2018;234:950-7. DOI: https://doi.org/10.1002/jcp.26923
Zhan FB, Zhang XW, Feng SL, Cheng J, Zhang Y, Li B, et al. MicroRNA-206 reduces osteosarcoma cell malignancy in vitro by targeting the PAX3-MET axis. Yonsei Med J 2019;60:163-73. DOI: https://doi.org/10.3349/ymj.2019.60.2.163
Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells 2020;9:976. DOI: https://doi.org/10.3390/cells9040976
Perut F, Roncuzzi L, Baldini N. The emerging roles of extracellular vesicles in osteosarcoma. Front Oncol 2019;9:1342. DOI: https://doi.org/10.3389/fonc.2019.01342
Chang X, Ma Z, Zhu G, Lu Y, Yang J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J Bone Oncol 2021;29:100372. DOI: https://doi.org/10.1016/j.jbo.2021.100372
Qin F, Tang H, Zhang Y, Zhang Z, Huang P, Zhu J. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion. J Cell Physiol 2020;235:4734-45. DOI: https://doi.org/10.1002/jcp.29351
Zhao W, Qin P, Zhang D, Cui X, Gao J, Yu Z, et al. Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging (Albany NY) 2019;11:9581-96. DOI: https://doi.org/10.18632/aging.102406
Deng L, Wang C, He C, Chen L. Bone mesenchymal stem cells derived extracellular vesicles promote TRAIL-related apoptosis of hepatocellular carcinoma cells via the delivery of microRNA-20a-3p. Cancer Biomark 2021;30:223-35. DOI: https://doi.org/10.3233/CBM-201633
Ying H, Lin F, Ding R, Wang W, Hong W. Extracellular vesicles carrying miR-193a derived from mesenchymal stem cells impede cell proliferation, migration and invasion of colon cancer by downregulating FAK. Exp Cell Res 2020;394:112144. DOI: https://doi.org/10.1016/j.yexcr.2020.112144
Maciel E, Mansuy IM. Extracellular vesicles and their miRNA cargo: A means of communication between soma and germline in the mammalian reproductive system. Chimia (Aarau) 2019;73:356-61. DOI: https://doi.org/10.2533/chimia.2019.356
Kushlinskii NE, Fridman MV, Braga EA. Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry (Mosc) 2016;81:315-28. DOI: https://doi.org/10.1134/S0006297916040027
Ram Kumar RM, Boro A, Fuchs B. Involvement and clinical aspects of microRNA in osteosarcoma. Int J Mol Sci 2016;17:877. DOI: https://doi.org/10.3390/ijms17060877
Sekar D, Mani P, Biruntha M, Sivagurunathan P, Karthigeyan M. Dissecting the functional role of microRNA 21 in osteosarcoma. Cancer Gene Ther 2019;26:179-82. DOI: https://doi.org/10.1038/s41417-019-0092-z
Jia KG, Feng G, Tong YS, Tao GZ, Xu L. miR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J Biochem 2020;167:365-70. DOI: https://doi.org/10.1093/jb/mvz099
Wang ZX, Yang JS, Pan X, Wang JR, Li J, Yin YM, et al. Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone 2010;47:445-54. DOI: https://doi.org/10.1016/j.bone.2010.05.027

Ethics Approval

All procedures were authorized by the Academic Ethics Committee of First People’s Hospital of Kashgar, Xinjiang, China

Rights

This work was supported by Xinjiang Natural Science Foundation

How to Cite

Keremu, A., Aila, P., Tusun , A., Abulikemu, M., & Zou, X. (2022). Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway. European Journal of Histochemistry, 66(3). https://doi.org/10.4081/ejh.2022.3394

Similar Articles

<< < 31 32 33 34 35 36 37 38 39 40 > >> 

You may also start an advanced similarity search for this article.