Genome size evaluations in cockroaches: new entries

Di Simon Eugster --Simon 20:19, 13 April 2006 (UTC) - Opera propria, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=702261
Submitted: 24 February 2022
Accepted: 21 March 2022
Published: 25 March 2022
Abstract Views: 762
PDF: 513
HTML: 19
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In this paper, we report genome size (GS) values for nine cockroaches (order Blattodea, families Blattidae, Blaberidae and Ectobiidae, ex Blattelidae,), three of which are original additions to the ten already present in the GS database: the death’s head roach (Blaberus craniifer), the Surinam cockroach (Pycnoscelus surinamensis) and the Madeira cockroach (Leucophaea maderae). Regarding the American cockroach (Periplaneta americana), the GS database contains two contrasting values (2.72 vs 3.41 pg); likely, the 2.72 pg value is the correct one as it is strikingly similar to our sperm DNA content evaluation (2.80 ± 0.11 pg). Also, we suggest halving the published GS of the Argentine cockroach Blaptica dubia and the spotted cockroach (the gray cockroach) Nauphoeta cinerea discussing (i) the occurrence of a correlation between increasing 2N chromosome number and GS within the order Blattodea; and (ii) the possible occurrence of a polyploidization phenomenon doubling a basic GS of 0.58 pg of some termite families (superfamily Blattoidea, epifamily Termitoidae).

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Gregory TR. Animal Genome Size Database. 2021 http://www.genomesize.com
Velez A, Wolff M, Gutierrez E. Blattaria of Colombia: list and distribution of genera. Zootaxa 2006;1210:39-52. DOI: https://doi.org/10.11646/zootaxa.1210.1.3
Beccaloni GW. Cockroach Species. 2014 http://Cockroach.SpeciesFile.org (accessed January 12, 2022). http://cockroach.speciesfile.org/HomePage/Cockroach/HomePage.aspx.
Li S, Zhu S, Jia Q, Dongwei Y, Chonghua R, Kang L, Suning L, et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nature Comm 2018;9:1008. DOI: https://doi.org/10.1038/s41467-018-03281-1
McKittrick FA. A contribution to the understanding of cockroach-termite affinities. Ann Entomol Soc Am 1965;58:18–22. DOI: https://doi.org/10.1093/aesa/58.1.18
Huber I. Taxonomic and ontogenetic studies of cockroaches (Blattaria). University of Kansas Science Bulletin1974;50:233-332.
Maekawa K, Matsumoto T. Molecular phylogeny of cockroaches (Blattaria) based on mitochondrial COII gene sequences. Systematic Entomology 2000;25:511-519. DOI: https://doi.org/10.1046/j.1365-3113.2000.00128.x
Djernaes M, Klass KD, Eggleton P. Identifying possible sister groups of Cryptocercidae + Isoptera: a combined molecular and morphological phylogeny of Dictyoptera. Mol Phylogenet Evol 2015;84:284-303. DOI: https://doi.org/10.1016/j.ympev.2014.08.019
Xiao B, Chen AH, Zhang YY, Guo-Fang J, Chao-Chao H, Chao-Dong, Z. Complete mitochondrial genomes of two cockroaches, Blattella germanica and Periplaneta americana, and the phylogenetic position of termites. Curr Genet 2012;58:65–77. DOI: https://doi.org/10.1007/s00294-012-0365-7
Cheng X, Zhang LP, Yu D, Storey KB, Zhang JY. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 2016;586:115-122. DOI: https://doi.org/10.1016/j.gene.2016.03.057
Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita, M, Manpreet KK, Legendre F, et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc Biol Sci 2019;286:20182076. DOI: https://doi.org/10.1098/rspb.2018.2076
Yamasaki T, Narahashi T. Fukaya, M., Ishii, S., Yamasaki, T. Laboratory guide for applied entomologists. Nihon Shokubutsu Boeki Kyokai, Tokyo; 1963.
Beccaloni GW, Eggleton, P. Order Blattodea. In: Zhang, Z.Q. editors. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 2013;3148, 199–200. DOI: https://doi.org/10.11646/zootaxa.3148.1.37
Koshikawa S, Miyazaki S, Cornette R, Matsumoto T, Miura T. Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). Naturwissenschaften 2008. 95:859–867. DOI: https://doi.org/10.1007/s00114-008-0395-7
Jankásek M, Varadínová ZK, Šťáhlavský F. Blattodea Karyotype Database 2021. http://web.natur.cuni.cz/zoologie/arthropods/blattodeadatabase/index.html DOI: https://doi.org/10.14411/eje.2021.020
Hanrahan J, Johnston JS. New genome size estimates of 134 species of arthropods. Chromosome Res 2011;19:809–823. DOI: https://doi.org/10.1007/s10577-011-9231-6
He K, KejianLin K, Wang G, Li F. Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis. Front Physiol 2016;7-569. DOI: https://doi.org/10.3389/fphys.2016.00569
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2015;147:217–239. DOI: https://doi.org/10.1159/000444429
Blommaert J. Genome size evolution: towards new model systems for old questions. Proc Biol Sci 2020;287:20201441. DOI: https://doi.org/10.1098/rspb.2020.1441
Vinogradov AE, Anatskaya OV. Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc Biol Sci 2006;273:27–32. DOI: https://doi.org/10.1098/rspb.2005.3266
Capanna E, Manfredi Romanini M.G. Nuclear DNA content and morphology of the karyotype in certain palearctic Microchiroptera. Caryologia 1971;24: 471-482. DOI: https://doi.org/10.1080/00087114.1971.10796455
Petrov DA. Evolution of genome size: new approaches to an old problem. Trends Genet. 2001;17:23–28. DOI: https://doi.org/10.1016/S0168-9525(00)02157-0
Gregory TR. Genome size evolution in animals. In: The Evolution of the Genome, Gregory TR editor. Elsevier, San Diego; 2005. DOI: https://doi.org/10.1016/B978-012301463-4/50001-2
Redi CA, Garagna S, Zuccotti M, Capanna E. Genome Size: A Novel Genomic Signature in Support of Afrotheria. J Mol Evol 2007;64:484-487. DOI: https://doi.org/10.1007/s00239-006-0237-1
Redi CA, Capanna E. Genome size evolution: Sizing Mammalian genomes. Cytogenet and Genome Res 2012;137:97-112. DOI: https://doi.org/10.1159/000338820
White MJ. Blattodea, mantodea, isoptera, grylloblattodea, phasmatodea, dermaptera and embioptera. In: Animal Cytogenetics, Blattodea, Mantodea, Isoptera. Vol.3: Insecta 2: in Animal Cytogenetics series edited by John B., Gebruder Borntraeger Press Berlin- Stuttgart, 1976.

Supporting Agencies

This work was supported with a grant of Fondazione Veronesi for scientific research to MM

How to Cite

Monti, M., Redi, C., & Capanna, E. (2022). Genome size evaluations in cockroaches: new entries. European Journal of Histochemistry, 66(2). https://doi.org/10.4081/ejh.2022.3400

Similar Articles

<< < 45 46 47 48 49 50 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
28
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A