Docetaxel-resistant triple-negative breast cancer cell-derived exosomal lncRNA LINC00667 reduces the chemosensitivity of breast cancer cells to docetaxel via targeting miR-200b-3p/Bcl-2 axis

Submitted: 13 August 2022
Accepted: 29 September 2022
Published: 25 October 2022
Abstract Views: 842
PDF: 438
HTML: 26
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Development of docetaxel (TXT) resistance is a major obstacle for triple-negative breast cancer (TNBC) treatment. Additionally, chemoresistant cell-derived exosomes were able to change the chemo-response of chemosensitive recipient cells via transportation of lncRNAs. It has been shown that lncRNA LINC00667 level was significantly elevated in breast cancer tissues. Therefore, we explored whether LINC00667 level is increased in TXT-resistant TNBC cell-derived exosomes. In addition, whether exosomal LINC00667 derived from TXT-resistant TNBC cell could affect TXT sensitivity in TXT-sensitive TNBC cells was investigated as well. In the present study, exosomes were isolated from the TXT-resistant TNBC cells and from TXT-sensitive TNBC cells. Next, the level of LINC00667 in the isolated exosomes was detected with RT-qPCR. We found that LINC00667 expression was obviously elevated in TXT-resistant TNBC cell-derived exosomes compared to that in TXT-sensitive TNBC cell-derived exosomes. In addition, LINC00667 could be transferred from TXT-resistant TNBC cells to TNBC cells via exosomes. Moreover, TXT-resistant TNBC cell secreted exosomal LINC00667 markedly reduced the sensitivity of TNBC cells to TXT via upregulation of Bcl-2. Meanwhile, downregulation of LINC00667 notably enhanced the sensitivity of TXT-resistant TNBC cells to TXT through downregulation of Bcl-2. Additionally, LINC00667 was considered to be a ceRNA to sponge miR-200b-3p, thereby elevating Bcl-2 expression. Collectively, TXT-resistant TNBC cell-derived exosomal LINC00667 could decrease the chemosensitivity of TNBC cells to TXT via regulating miR-200b-3p/Bcl-2 axis. These findings suggested that LINC00667 might serve as a promising target for enhancing sensitivity of TNBC cells to TXT therapy.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Scordamaglia D, et al. IGF-1/IGF-1R/FAK/YAP transduction signaling prompts growth effects in triple-negative breast cancer (TNBC) cells. Cells 2020;9:1010. DOI: https://doi.org/10.3390/cells9041010
Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-How we can rise to the challenge. Cells 2019;8:957. DOI: https://doi.org/10.3390/cells8090957
Shen M, Pan H, Chen Y, Xu YH, Yang W, Wu Z. A review of current progress in triple-negative breast cancer therapy. Open Med (Wars) 2020;15:1143-9. DOI: https://doi.org/10.1515/med-2020-0138
Lee JO, Kang MJ, Byun WS, Kim SA, Seo IH, Han JA, et al. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res 2019;21:115. DOI: https://doi.org/10.1186/s13058-019-1204-2
Mollah F, Varamini P. Overcoming therapy resistance and relapse in TNBC: Emerging technologies to target breast cancer-associated fibroblasts. Biomedicines 2021;9:1921. DOI: https://doi.org/10.3390/biomedicines9121921
Ronchi A, Pagliuca F, Zito Marino F, Accardo M, Cozzolino I, Franco R. Current and potential immunohistochemical biomarkers for prognosis and therapeutic stratification of breast carcinoma. Semin Cancer Biol 2021;72:114-22. DOI: https://doi.org/10.1016/j.semcancer.2020.03.002
Isakoff SJ. Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J 2010;16:53-61. DOI: https://doi.org/10.1097/PPO.0b013e3181d24ff7
Zhang E, Xing R, Liu S, Li P. Current advances in development of new docetaxel formulations. Expert Opin Drug Deliv 2019;16:301-12. DOI: https://doi.org/10.1080/17425247.2019.1583644
Wongsaengsak S, Quirch M, Ball S, Sultan A, Jahan N, Elmassry M, et al. Docetaxel-induced acute myositis: a case report with review of literature. J Chemother 2021;33:116-21. DOI: https://doi.org/10.1080/1120009X.2020.1785740
Li Z, Dong J, Zou T, Du C, Li S, Chen C, et al. Dexamethasone induces docetaxel and cisplatin resistance partially through up-regulating Krüppel-like factor 5 in triple-negative breast cancer. Oncotarget 2017;8:11555-65. DOI: https://doi.org/10.18632/oncotarget.14135
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021;141:111824. DOI: https://doi.org/10.1016/j.biopha.2021.111824
Hwang E, Hwang SH, Kim J, Park JH, Oh S, Kim YA, et al. ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line. Ann Surg Treat Res 2018;95:240-8. DOI: https://doi.org/10.4174/astr.2018.95.5.240
Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008;26:1275-81. DOI: https://doi.org/10.1200/JCO.2007.14.4147
Zhang F, Wang H, Yu J, Yao X, Yang S, Li W, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM. Mol Cancer 2021;20:6. DOI: https://doi.org/10.1186/s12943-020-01299-y
Yue X, Wu WY, Dong M, Guo M. LncRNA MALAT1 promotes breast cancer progression and doxorubicin resistance via regulating miR-570-3p. Biomed J 2021;44:S296-s304. DOI: https://doi.org/10.1016/j.bj.2020.11.002
Du C, Wang Y, Zhang Y, Zhang J, Zhang L, Li J. LncRNA DLX6-AS1 contributes to epithelial-mesenchymal transition and cisplatin resistance in triple-negative breast cancer via modulating mir-199b-5p/paxillin axis. Cell Transplant 2020;29:963689720929983. DOI: https://doi.org/10.1177/0963689720929983
Li PP, Li RG, Huang YQ, Lu JP, Zhang WJ, Wang ZY. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging (Albany, NY) 2021;13:24171-91. DOI: https://doi.org/10.18632/aging.203672
Xu M, Xu X, Pan B, Chen X, Lin K, Zeng K, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer 2019;18:135. DOI: https://doi.org/10.1186/s12943-019-1063-6
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles in bone metastasis: Key players in the tumor microenvironment and promising therapeutic targets. Int J Mol Sci 2020;21:6680. DOI: https://doi.org/10.3390/ijms21186680
Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 2019;1871:455-68. DOI: https://doi.org/10.1016/j.bbcan.2019.04.004
Zhou Y, Zhang Y, Gong H, Luo S, Cui Y. The role of exosomes and their applications in cancer. Int J Mol Sci 2021;22:12204. DOI: https://doi.org/10.3390/ijms222212204
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021;11:3183-95. DOI: https://doi.org/10.7150/thno.52570
Zhang H, Wang L, Li C, Yu Y, Yi Y, Wang J, et al. Exosome-induced regulation in inflammatory bowel disease. Front Immunol 2019;10:1464. DOI: https://doi.org/10.3389/fimmu.2019.01464
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020;9:1157. DOI: https://doi.org/10.3390/cells9051157
Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases. Prog Retin Eye Res 2020;79:100849. DOI: https://doi.org/10.1016/j.preteyeres.2020.100849
Xu CG, Yang MF, Ren YQ, Wu CH, Wang LQ. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 2016;20:4362-8.
Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M, et al. Exosome-mediated transfer of lncRNA‑SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 2018;53:1013-26. DOI: https://doi.org/10.3892/ijo.2018.4467
Zhu M, Lv Q, Huang H, Sun C, Pang D, Wu J. Identification of a four-long non-coding RNA signature in predicting breast cancer survival. Oncol Lett 2020;19:221-8. DOI: https://doi.org/10.3892/ol.2019.11063
Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int 2014;2014:864894. DOI: https://doi.org/10.1155/2014/864894
Azuma Y, Yokobori T, Mogi A, Yajima T, Kosaka T, Iijima M, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today 2020;50:1099-106. DOI: https://doi.org/10.1007/s00595-020-01976-x
Zhang Q, Jin X, Shi W, Chen X, Pang W, Yu X, et al. A long non-coding RNA LINC00461-dependent mechanism underlying breast cancer invasion and migration via the miR-144-3p/KPNA2 axis. Cancer Cell Int 2020;20:137. DOI: https://doi.org/10.1186/s12935-020-01221-y
Xu S, Wang P, You Z, Meng H, Mu G, Bai X, et al. The long non-coding RNA EPB41L4A-AS2 inhibits tumor proliferation and is associated with favorable prognoses in breast cancer and other solid tumors. Oncotarget 2016;7:20704-17. DOI: https://doi.org/10.18632/oncotarget.8007
Wang S, Jin J, Chen J, Lou W. MUC14-related ncRNA-mRNA network in breast cancer. Genes (Basel) 2021;12:1677. DOI: https://doi.org/10.3390/genes12111677
Wang Y, Ma J, Li R, Gao X, Wang H, Jiang G. LncRNA TMPO-AS1 serves as a sponge for miR-4731-5p modulating breast cancer progression through FOXM1. Am J Transl Res 2021;13:11094-106.
Lu Y, Gao Z, Liu C, Long M, Yang L, Li R, et al. Integrative analysis of lncRNA-miRNA-mRNA-associated competing endogenous RNA regulatory network involved in EV71 infection. Am J Transl Res 2021;13:7440-57.
Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother 2020;121:109627. DOI: https://doi.org/10.1016/j.biopha.2019.109627
Zhan T, Gao X, Wang G, Li F, Shen J, Lu C, et al. Construction of novel lncRNA-miRNA-mRNA network associated with recurrence and identification of immune-related potential regulatory axis in hepatocellular carcinoma. Front Oncol 2021;11:626663. DOI: https://doi.org/10.3389/fonc.2021.626663
Echavarria I, López-Tarruella S, Picornell A, García-Saenz J, Jerez Y, Hoadley K, et al. Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann's refined classification. Clin Cancer Res 2018;24:1845-52. DOI: https://doi.org/10.1158/1078-0432.CCR-17-1912
Gómez-Miragaya J, Díaz-Navarro A, Tonda R, Beltran S, Palomero L, Palafox M, et al. Chromosome 12p amplification in triple-negative/BRCA1-mutated breast cancer associates with emergence of docetaxel resistance and carboplatin sensitivity. Cancer Res 2019;79:4258-70. DOI: https://doi.org/10.1158/0008-5472.CAN-18-3835
Gómez-Miragaya J, Morán S, Calleja-Cervantes ME, Collado-Sole A, Paré L, Gómez A, et al. The altered transcriptome and DNA methylation profiles of docetaxel resistance in breast cancer PDX models. Mol Cancer Res 2019;17:2063-76. DOI: https://doi.org/10.1158/1541-7786.MCR-19-0040
Zeng A, Wei Z, Yan W, Yin J, Huang X, Zhou X, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett 2018;436:10-21. DOI: https://doi.org/10.1016/j.canlet.2018.08.004
Na-Er A, Xu YY, Liu YH, Gan YJ. Upregulation of serum exosomal SUMO1P3 predicts unfavorable prognosis in triple negative breast cancer. Eur Rev Med Pharmacol Sci 2021;25:154-60.
Lakshmi S, Hughes TA, Priya S. Exosomes and exosomal RNAs in breast cancer: A status update. Eur J Cancer 2021;144:252-68. DOI: https://doi.org/10.1016/j.ejca.2020.11.033
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018;8:3932-48. DOI: https://doi.org/10.7150/thno.25541
Han M, Gu Y, Lu P, Li J, Cao H, Li X, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer 2020;19:26. DOI: https://doi.org/10.1186/s12943-020-1145-5
Wang J, Lv B, Su Y, Wang X, Bu J, Yao L. Exosome-mediated transfer of lncRNA HOTTIP promotes cisplatin resistance in gastric cancer cells by regulating HMGA1/miR-218 axis. Onco Targets Ther 2019;12:11325-38. DOI: https://doi.org/10.2147/OTT.S231846
Sheng X, Dai H, Du Y, Peng J, Sha R, Yang F, et al. LncRNA CARMN overexpression promotes prognosis and chemosensitivity of triple negative breast cancer via acting as miR143-3p host gene and inhibiting DNA replication. J Exp Clin Cancer Res 2021;40:205. DOI: https://doi.org/10.1186/s13046-021-02015-4
Ning X, Zhao J, He F, Yuan Y, Li B, Ruan J. Long non-coding RNA TMPO-AS1 facilitates chemoresistance and invasion in breast cancer by modulating the miR-1179/TRIM37 axis. Oncol Lett 2021;22:500. DOI: https://doi.org/10.3892/ol.2021.12761
Liu S, Cao Q, An G, Yan B, Lei L. Identification of the 3-lncRNA signature as a prognostic biomarker for colorectal cancer. Int J Mol Sci 2020;21:9359. DOI: https://doi.org/10.3390/ijms21249359
DiPaola RS, Aisner J. Overcoming bcl-2- and p53-mediated resistance in prostate cancer. Semin Oncol 1999;26:S112-6.
Gu M, Zheng W, Zhang M, Dong X, Zhao Y, Wang S, et al. LncRNA NONHSAT141924 promotes paclitaxel chemotherapy resistance through p-CREB/Bcl-2 apoptosis signaling pathway in breast cancer. J Cancer 2020;11:3645-54. DOI: https://doi.org/10.7150/jca.39463
Huang P, Gu XJ, Huang MY, Tan JH, Wang J. Down-regulation of LINC00667 hinders renal tubular epithelial cell apoptosis and fibrosis through miR-34c. Clin Transl Oncol 2021;23:572-81. DOI: https://doi.org/10.1007/s12094-020-02451-2
Qin Z, Liu X, Li Z, Wang G, Feng Z, Liu Y, et al. LncRNA LINC00667 aggravates the progression of hepatocellular carcinoma by regulating androgen receptor expression as a miRNA-130a-3p sponge. Cell Death Discov 2021;7:387. DOI: https://doi.org/10.1038/s41420-021-00787-4

Ethics Approval

This study was approved by the Ethics Committee of Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University

Supporting Agencies

Medical Teaching Research Collaborative Health Service System in Minhang District , Shanghai Municipal Health Commission

How to Cite

Li, J. ., Kang, J. ., Liu, W. ., Liu, J. ., Pan, G. ., Mao, A. ., Zhang, Q. ., Lu, J. ., Ding, J. ., & Li, H. (2022). Docetaxel-resistant triple-negative breast cancer cell-derived exosomal lncRNA LINC00667 reduces the chemosensitivity of breast cancer cells to docetaxel <em>via</em> targeting miR-200b-3p/Bcl-2 axis. European Journal of Histochemistry, 66(4). https://doi.org/10.4081/ejh.2022.3529