Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis

Submitted: 26 July 2023
Accepted: 29 August 2023
Published: 2 October 2023
Abstract Views: 788
PDF: 462
HTML: 8
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Pulmonary fibrosis is a progressive lung disorder. Evidence has shown that hsa_circular (circ)RNA_0001861 is dysregulated in pulmonary fibrosis. However, the detailed function of hsa_circRNA_0001861 in pulmonary fibrosis remains unexplored. To investigate the function of hsa_circRNA_0001861 in pulmonary fibrosis, human pulmonary fibroblasts in vitro were used, and cell counting kit-8 (CCK-8) and 5-ethynyl-2’-deoxyuridine (EdU) staining were performed to assess cell viability and proliferation, respectively. Western blot analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to evaluate protein and mRNA levels. Meanwhile, the relationship among hsa_circRNA_0001861, miR-296-5p and BCL-2 binding component 3 (BBC3) was investigated by RNA pull-down assays. Furthermore, an in vivo model of lung fibrosis was constructed to assess the function of hsa_circRNA_0001861 in lung fibrosis. The data revealed that TGF‑β1 significantly increased the proliferation of pulmonary fibroblasts, while this phenomenon was markedly abolished by hsa_circRNA_0001861 overexpression. hsa_circRNA_0001861 overexpression markedly inhibited TGF‑β1‑induced fibrosis in pulmonary fibroblasts through the mediation of α-smooth muscle actin, E-cadherin, collagen III and fibronectin 1. Meanwhile, hsa_circRNA_0001861 could bind with miR-296-5p, and BBC3 was identified to be the downstream mRNA of miR-296-5p. In addition, the upregulation of hsa_circRNA_0001861 clearly reversed TGF‑β1‑induced fibrosis and proliferation in pulmonary fibroblasts through the upregulation of BBC3. Furthermore, hsa_circRNA_0001861 upregulation markedly alleviated pulmonary fibrosis in vivo. Hsa_circRNA_0001861 upregulation attenuated pulmonary fibrosis by modulating the miR-296-5p/BBC3 axis. Hence, the present study may provide some insights for the discovery of new methods against pulmonary fibrosis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J Ethnopharmacol 2017;198:45-63. DOI: https://doi.org/10.1016/j.jep.2016.12.042
Mudawi D, Heyes K, Hastings R, Rivera-Ortega P, Chaudhuri N. An update on interstitial lung disease. Br J Hosp Med (Lond) 2021;82:1-14. DOI: https://doi.org/10.12968/hmed.2020.0556
He Y, Thummuri D, Zheng G, Okunieff P, Citrin DE, Vujaskovic Z, et al. Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 2019;209:14-21. DOI: https://doi.org/10.1016/j.trsl.2019.03.006
Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF. microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med 2019;51:63. DOI: https://doi.org/10.1038/s12276-019-0255-x
Shin YJ, Kim SH, Park CM, Kim HY, Kim IH, Yang MJ, et al. Exposure to cigarette smoke exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice. J Toxicol Sci 2021;46:487-97. DOI: https://doi.org/10.2131/jts.46.487
Hatabu H, Kaye KM, Christiani DC. Viral infection, pulmonary fibrosis, and long COVID. Am J Respir Crit Care Med 2023;207:647-9. DOI: https://doi.org/10.1164/rccm.202211-2121ED
Zhang Y, Liu Q, Ning J, Jiang T, Kang A, Li L, et al. The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM(2.5) exposure-induced pulmonary fibrosis of mice. J Hazard Mater 2022;432:128655. DOI: https://doi.org/10.1016/j.jhazmat.2022.128655
Feldman RM, Singer C. Noncardiogenic pulmonary edema and pulmonary fibrosis in falciparum malaria. Rev Infect Dis 1987;9:134-9. DOI: https://doi.org/10.1093/clinids/9.1.134
Mishra S, Shah MI, Udhaya Kumar S, Thirumal Kumar D, Gopalakrishnan C, Al-Subaie AM, et al. Network analysis of transcriptomics data for the prediction and prioritization of membrane-associated biomarkers for idiopathic pulmonary fibrosis (IPF) by bioinformatics approach. Adv Protein Chem Struct Biol 2021;123:241-73. DOI: https://doi.org/10.1016/bs.apcsb.2020.10.003
Fang C, Huang H, Feng Y, Zhang Q, Wang N, Jing X, et al. Whole-exome sequencing identifies susceptibility genes and pathways for idiopathic pulmonary fibrosis in the Chinese population. Sci Rep 2021;11:1443. DOI: https://doi.org/10.1038/s41598-020-80944-4
Pang X, Shi H, Chen X, Li C, Shi B, Yeo AJ, et al. miRNA-34c-5p targets Fra-1 to inhibit pulmonary fibrosis induced by silica through p53 and PTEN/PI3K/Akt signaling pathway. Environ Toxicol 2022;37:2019-32. DOI: https://doi.org/10.1002/tox.23547
Martinović Kaliterna D, Petrić M. Biomarkers of skin and lung fibrosis in systemic sclerosis. Expert Rev Clin Immunol 2019;15:1215-23. DOI: https://doi.org/10.1080/1744666X.2020.1670062
Inoue Y, Kaner RJ, Guiot J, Maher TM, Tomassetti S, Moiseev S, et al. Diagnostic and prognostic biomarkers for chronic fibrosing interstitial lung diseases with a progressive phenotype. Chest 2020;158:646-59. DOI: https://doi.org/10.1016/j.chest.2020.03.037
Zhang JX, Lu J, Xie H, Wang DP, Ni HE, Zhu Y, et al. circHIPK3 regulates lung fibroblast-to-myofibroblast transition by functioning as a competing endogenous RNA. Cell Death Dis 2019;10:182. DOI: https://doi.org/10.1038/s41419-019-1430-7
Kristensen LS, Hansen TB, Veno MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 2018;37:555-65. DOI: https://doi.org/10.1038/onc.2017.361
Shan C, Zhang Y, Hao X, Gao J, Chen X, Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer 2019;18:136. DOI: https://doi.org/10.1186/s12943-019-1069-0
Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem 2019;120:11022-32. DOI: https://doi.org/10.1002/jcb.28380
Li R, Wang Y, Song X, Sun W, Zhang J, Liu Y, et al. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med 2018;42:3256-68. DOI: https://doi.org/10.3892/ijmm.2018.3892
Suzuki A, Sakamoto K, Nakahara Y, Enomoto A, Hino J, Ando A, et al. BMP3b is a novel anti-fibrotic molecule regulated by meflin in lung fibroblasts. Am J Respir Cell Mol Biol 2022;67:446-58. DOI: https://doi.org/10.1165/rcmb.2021-0484OC
Xu X, Ma C, Wu H, Ma Y, Liu Z, Zhong P, et al. Fructose induces pulmonary fibrotic phenotype through promoting epithelial-mesenchymal transition mediated by ROS-activated latent TGF-beta1. Front Nutr 2022;9:850689. DOI: https://doi.org/10.3389/fnut.2022.850689
Lee JH, Lee CM, Lee JH, Kim MO, Park JW, Kamle S, et al. Kasugamycin is a novel chitinase 1 inhibitor with strong antifibrotic effects on pulmonary fibrosis. Am J Respir Cell Mol Biol 2022;67:309-19. DOI: https://doi.org/10.1165/rcmb.2021-0156OC
Aschner Y, Correll KA, Beke KM, Foster DG, Roybal HM, Nelson MR, et al. PTPalpha promotes fibroproliferative responses after acute lung injury. Am J Physiol Lung Cell Mol Physiol 2022;323:L69-L83. DOI: https://doi.org/10.1152/ajplung.00436.2021
Shi C, Chen X, Yin W, Sun Z, Hou J, Han X. Wnt8b regulates myofibroblast differentiation of lung-resident mesenchymal stem cells via the activation of Wnt/beta-catenin signaling in pulmonary fibrogenesis. Differentiation 2022;125:35-44. DOI: https://doi.org/10.1016/j.diff.2022.03.004
Li J, Zhang X, Wang T, Li J, Su Q, Zhong C, et al. The MIR155 host gene/microRNA-627/HMGB1/NF-kappaB loop modulates fibroblast proliferation and extracellular matrix deposition. Life Sci 2021;269:119085. DOI: https://doi.org/10.1016/j.lfs.2021.119085
Sun J, Su W, Zhao X, Shan T, Jin T, Guo Y, et al. LncRNA PFAR contributes to fibrogenesis in lung fibroblasts through competitively binding to miR-15a. Biosci Rep 2019;39BSR20190280. DOI: https://doi.org/10.1042/BSR20190280
Ghahary A, Tredget EE, Chang LJ, Scott PG, Shen Q. Genetically modified dermal keratinocytes express high levels of transforming growth factor-beta1. J Invest Dermatol 1998;110:800-5. DOI: https://doi.org/10.1038/jid.1998.5
Wang X, Zhao S, Lai J, Guan W, Gao Y. Anti-inflammatory, antioxidant, and antifibrotic effects of gingival-derived MSCs on bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 2021;23:99. DOI: https://doi.org/10.3390/ijms23010099
Guan S, Liu H, Zhou J, Zhang Q, Bi H. The MIR100HG/miR-29a-3p/Tab1 axis modulates TGF-beta1-induced fibrotic changes in type II alveolar epithelial cells BLM-caused lung fibrogenesis in mice. Toxicol Lett 2022;363:45-54. DOI: https://doi.org/10.1016/j.toxlet.2022.04.003
Tassone P, Caruso C, White M, Tavares Dos Santos H, Galloway T, Dooley L, et al. The role of matrixmetalloproteinase-2 expression by fibroblasts in perineural invasion by oral cavity squamous cell carcinoma. Oral Oncol 2022;132:106002. DOI: https://doi.org/10.1016/j.oraloncology.2022.106002
Zhang X, Qu H, Yang T, Liu Q, Zhou H. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway. Cell Cycle 2022;21:2309-22. DOI: https://doi.org/10.1080/15384101.2022.2093598
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 2016;12:325-38. DOI: https://doi.org/10.1038/nrneph.2016.48
Nakahara Y, Hashimoto N, Sakamoto K, Enomoto A, Adams TS, Yokoi T, et al. Fibroblasts positive for meflin have anti-fibrotic properties in pulmonary fibrosis. Eur Respir J 2021;58:2003397. DOI: https://doi.org/10.1183/13993003.03397-2020
Fitzwalter BE, Thorburn A. FOXO3 links autophagy to apoptosis. Autophagy 2018;14:1467-8. DOI: https://doi.org/10.1080/15548627.2018.1475819
Guan R, Yuan L, Li J, Wang J, Li Z, Cai Z, et al. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J 2022;60:2102307. DOI: https://doi.org/10.1183/13993003.02307-2021
Duhig EE. Usual interstitial pneumonia: a review of the pathogenesis and discussion of elastin fibres, type II pneumocytes and proposed roles in the pathogenesis. Pathology 2022;54:517-25. DOI: https://doi.org/10.1016/j.pathol.2022.05.002
Zhang L, Chi X, Luo W, Yu S, Zhang J, Guo Y, et al. Lung myofibroblast transition and fibrosis is regulated by circ0044226. Int J Biochem Cell Biol 2020;118:105660. DOI: https://doi.org/10.1016/j.biocel.2019.105660
Rackow AR, Judge JL, Woeller CF, Sime PJ, Kottmann RM. miR-338-3p blocks TGFbeta-induced myofibroblast differentiation through the induction of PTEN. Am J Physiol Lung Cell Mol Physiol 2022;322:L385-L400. DOI: https://doi.org/10.1152/ajplung.00251.2021
Zhou Y, Gao Y, Zhang W, Chen Y, Jin M, Yang Z. Exosomes derived from induced pluripotent stem cells suppresses M2-type macrophages during pulmonary fibrosis via miR-302a-3p/TET1 axis. Int Immunopharmacol 2021;99:108075. DOI: https://doi.org/10.1016/j.intimp.2021.108075
Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med 2015;13:314. DOI: https://doi.org/10.1186/s12967-015-0672-0
Feng L, Chen X, Zhang S, Chen Y, Yu Y. Role of miR-139-5p in ectopic endometrial stromal cells and the underlying molecular mechanism. Exp Ther Med 2021;22:1251. DOI: https://doi.org/10.3892/etm.2021.10686
Shi W, Hao J, Wu Y, Liu C, Shimizu K, Li R, et al. Protective effects of heterophyllin B against bleomycin-induced pulmonary fibrosis in mice via AMPK activation. Eur J Pharmacol 2022;921:174825. DOI: https://doi.org/10.1016/j.ejphar.2022.174825
Kuwano K, Hagimoto N, Nakanishi Y. The role of apoptosis in pulmonary fibrosis. Histol Histopathol 2004;19:867-81.
Liu H, Cheng Y, Yang J, Wang W, Fang S, Zhang W, et al. BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis. Cell Death Dis 2017;8:e2657. DOI: https://doi.org/10.1038/cddis.2017.78
He R, Wang M, Zhao C, Shen M, Yu Y, He L, et al. TFEB-driven autophagy potentiates TGF-beta induced migration in pancreatic cancer cells. J Exp Clin Cancer Res 2019;38:340. DOI: https://doi.org/10.1186/s13046-019-1343-4
Liu N, Feng J, Lu X, Yao Z, Liu Q, Lv Y, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-beta1/Smad3 and TGF-beta1/p38 MAPK pathways. Mediators Inflamm 2019;2019:6175091. DOI: https://doi.org/10.1155/2019/6175091

Ethics Approval

The Ethics Committee of the First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine approved this study

How to Cite

Wu, T., Wu, S., Jiao, H., Feng, J., & Zeng, X. (2023). Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis. European Journal of Histochemistry, 67(4). https://doi.org/10.4081/ejh.2023.3839

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
67
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A