Lectins as versatile tools to explore cellular glycosylation

Submitted: 7 January 2024
Accepted: 16 January 2024
Published: 29 January 2024
Abstract Views: 1015
PDF: 798
HTML: 24
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping – and understanding – of the glycome.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Boyd WC, Shapleigh E. Separation of individuals of any blood group into secretors and non-secretors by use of a plant agglutinin (lectin). Blood 1954;9 1195-98. DOI: https://doi.org/10.1182/blood.V9.12.1195.1195
IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), and Nomenclature Commission of IUB (NC-IUB). Newsletter. Arch Biochem Biophys 1981;206;458-62.
Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N. What should be called a lectin? Nature 1980;285 66. DOI: https://doi.org/10.1038/285066b0
Kocourek J. Chapter 1, Historical background. In: Liener IR, Sharon N, Goldstein IJ, Editors. The lectins: properties, functions and applications in biology and medicine. Academic Press 1986; p. 3-33.
Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004;14:53R-63R. DOI: https://doi.org/10.1093/glycob/cwh122
Stillmark PH. [Über Ricin, ein giftiges Ferment aus den Samen von Ricinus comm. L. und einigen anderen Euphorbiaceen].[Book in German]. Dorpat, 1888.
Watkins WM, Morgan WT. Neutralization of the anti-H agglutinin in eel serum by simple sugars. Nature 1952;169:825-6. DOI: https://doi.org/10.1038/169825a0
Boyd WC, Reguera RM. Haemagglutinating substances for human cells in various plants. J Immunol 1949 62:333-9. DOI: https://doi.org/10.4049/jimmunol.62.3.333
Morgan WTJ, Watkins WM. The inhibition of the haemagglutinins in plant seeds by human blood group substances and simple sugars. Br J Exp Pathol 1959;34:94-103.
Noguchi H. On the multiplicity of the serum haemagglutinins of cold blooded animals. Zentralbl Bakteriol I Abt Orig 1903;34:286-8.
Mitchell SW, Reichert ET. Venoms of poisonous serpents. By S. Weir Washington, Smithsonian Inst., 1886.
Mitchell SW, Stewart AH. A contribution to the study of action of the venom of the Crotalus adamanteus upon the blood. Trans. College of Physicians, Philadelphia, 3rd Ser 1898;19:105.
Hudgin RL, Pricer jr WE, Ashwell G, Stockert RJ, Morell G. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 1974;249:5536-43. DOI: https://doi.org/10.1016/S0021-9258(20)79761-9
Teichberg VI, Silman I, Beitsch DD, Resheff G. A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci USA 1975;72:1383-87. DOI: https://doi.org/10.1073/pnas.72.4.1383
Briles EB, Gregory W, Fletcher P, Kornfeld S. Vertebrate lectins, comparison of properties of beta-galactoside-binding lectins from tissues of calf and chicken. J Cell Biol 1979;81:528-37. DOI: https://doi.org/10.1083/jcb.81.3.528
Dommett RM, Klein N, Turner MW. Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 2006;68:193-209. DOI: https://doi.org/10.1111/j.1399-0039.2006.00649.x
Ley K. The role of selectins in inflammation and disease. Trends Mol Med 2003;9:263-8. DOI: https://doi.org/10.1016/S1471-4914(03)00071-6
Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectin–deficient mice. Cell 1993;74:541–4. DOI: https://doi.org/10.1016/0092-8674(93)80055-J
Labow MA, Norton CR, Rumberger JM, Lombard-Gillooly KM, Shuster DJ, Hubbard J, et al. Characterization of E-selectin-deficient mice: demonstration of overlapping function of the endothelial selectins. Immunity 1994;1:709–20. DOI: https://doi.org/10.1016/1074-7613(94)90041-8
Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 1996;84:563-74. DOI: https://doi.org/10.1016/S0092-8674(00)81032-6
Polak JM, Van Noorden S. Introduction to immunocytochemistry. 3rd edition. Garland Science, London; 2003.
Roth J. Lectins for histochemical demonstration of glycans. Histochem Cell Biol 2011;136:117-30. DOI: https://doi.org/10.1007/s00418-011-0848-5
Silva FG, Nadasdy T, Laszik Z. Immunohistochemical and lectin dissection of the human nephron in health and disease. Arch Pathol Lab Med 1993 117;1233-9.
Liska J, Jakubovsky J, Ruzickova M, Surmikova E, Zaviacic M. The use of lectins identified with specific antibodies in lectin histochemistry of NZB/W F1 mouse kidneys. Acta Histochem 1993;94:185-8. DOI: https://doi.org/10.1016/S0065-1281(11)80373-9
Sato H, Toyoda K, Furukawa F, Ogasawara H, Imazawa T, Imaida K, et al. Lectin reactivity in the kidney of newborn rat compared to adult rat. Esei-Shikenjo-Hokuku 1990;108;78-83.
Aguirre JI, Han JS, Itagaki S, Doi K. Lectin histochemical study on the kidney of normal and streptozotocin-induced diabetic hamsters. Histol Histopathol 1993;8:273-8.
Gheri G, Bryck SG, Sgambati E, Russo G. Chick embryo metanephros: the glycosylation pattern as revealed with lectin glycoconjugates. Acta Histochem 1993;94;113-24. DOI: https://doi.org/10.1016/S0065-1281(11)80363-6
Menghi G, Gabrielli MG, Accili D. Mosaic lectin labelling in the quail collecting ducts. Histol Histopathol 1995;10:305-12.
Hentschel H, Walther P. Heterogeneous distribution of glycoconjugates in the kidney of the dogfish Scyliorhinus caniculis with reference to changes in the glycosylation pattern during ontogenic development of the nephron. Anat Rec 1993;235:21-32. DOI: https://doi.org/10.1002/ar.1092350104
Noguchi A, Kurahara N, Yamato O, Ichii O, Yabuki A. Lectin histochemistry of the normal feline kidney. Vet Sci 2023;10:26. DOI: https://doi.org/10.3390/vetsci10010026
Jones CJP, Wilsher S, Russo G, Aplin JD. Lectin histochemistry reveals two cytotrophoblast differentiation pathways during placental development in the feline (Felis catus). Placenta 2023;134:30-8. DOI: https://doi.org/10.1016/j.placenta.2023.02.011
EY Laboratories, Inc. Lectin product characteristics. Available from: http://eylabs.com/lectin-product-characteristics/
Wu AM, Sugii S. Coding and classification of D-galactose, N-acetyl-D-galactosamine, and β-D-Galp-[1→3(4)]-β-D-GlcpNAc, specificities of applied lectins. Carbohydr Res 1991;213:127-43. DOI: https://doi.org/10.1016/S0008-6215(00)90604-9
Brooks SA, Leathem AJC. Expression of alpha-GalNAc glycoproteins by breast cancers. Brit J Cancer 1995;71:1033-8.
Khan S, Brooks SA, Leathem AJC. GalNAc-type glycoproteins in breast cancer - a 26 lectin study. J Pathol 1994;172:134A.
Prokop O, Schlesinger D, Rackwitz A. [Über einen thermostabile ‘antibody like substance’ (anti-A hel) bei Helix pomatia und deren Herkunft].[Article in German]. Z. Immun-Allergieforsch 1965;129:402-12.
Hammarstrom S, Kabat EA. Purification and characterisation of a blood group A reactive hemagglutinin from the snail Helix pomatia and a study of its combining site. Biochemistry 1969;8:2696-705. DOI: https://doi.org/10.1021/bi00835a002
Hammarstrom S, Kabat EA. Studies on the specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry 1971;10:1684-92. DOI: https://doi.org/10.1021/bi00785a028
Baker Da, Sugii S, Kabat EA, Ratcliffe RM, Hermentin P, Liemieux RU. Immunochemical studies on the combining site of Forssman hapten reactive hemagglutinins from Dolichos biflorus, Helix pomatia and Wisteria floribunda. Biochemistry 1983;2:2741-50. DOI: https://doi.org/10.1021/bi00280a023
Dwek MV, Ross HA, Streets AJ, Brooks SA, Adam E, Titcomb A, et al. Helix pomatia agglutinin lectin-binding oligosaccharides of aggressive breast cancer. Int J Cancer 2001;95:79-85. DOI: https://doi.org/10.1002/1097-0215(20010320)95:2<79::AID-IJC1014>3.0.CO;2-E
Hammarstrom S, Westoo A, Bjork I. Subunit structure of Helix pomatia A hemagglutinin. Scand J Immunol 1972;1:295-309. DOI: https://doi.org/10.1111/j.1365-3083.1972.tb03295.x
Sanchez JF, Lescar J, Chazalet V, Audfray A, Gagnon J, Alvarez R, et al. Biochemical and structural analysis of Helix pomatia agglutinin (HPA): A hexameric lectin with a novel fold. J Biol Chem 2006;281:20171-80. DOI: https://doi.org/10.1074/jbc.M603452200
Lescar J, Sanchez J-F, Audfray A, Coll J-L, Breton C, Mitchell EP, Imberty A. Structural basis for recognition of breast and colon cancer epitopes Tn antigen and Forssman disaccharide by Helix pomatia lectin. Glycobiology 2007;17:1077-83. DOI: https://doi.org/10.1093/glycob/cwm077
Walski T, De Schutter K, Cappelle K, Ven Damme EJM, Smagghe G. Distribution of glycan motifs at the surface of midgut cells in the cotton leafworm (Spodoptera littoralis) demonstrated by lectin binding. Front Physiol 2017 8:1020. DOI: https://doi.org/10.3389/fphys.2017.01020
Miller R, Collowan J, Fish W. Purification and molecular properties of a sialic acid-specific lectin from the slug Limax flavus. J Biol Chem 1982;257:7574-80. DOI: https://doi.org/10.1016/S0021-9258(18)34418-1
Mo HQ, Winter HC, Goldstein IJ. Purification and characterisation of a Neu5Ac alpha2-6Gal beta1-4Glc/GalNAc-specific lectin from the fruiting body of the polypore mushroom Polporus squamosus. J Biol Chem 2000;275:10623-9. DOI: https://doi.org/10.1074/jbc.275.14.10623
Wang WC, Cummings RD. The immobilised leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex type asn-linked oligosaccharides containing terminal sialic acid 2,3 linked to penultimate galactose residues. J Biol Chem 1988;263:4576-85. DOI: https://doi.org/10.1016/S0021-9258(18)68821-0
Taatjes DJ, Roth J, Peumans W, Goldstein IJ. Elderberry bark lectin-gold techniques for the detection of NeuAc (alpha2,6) Gal/GalNAc sequences: applications and limitations. Histochem J 1988;20;478-90. DOI: https://doi.org/10.1007/BF01002646
Aub JC, Tieslau C, Lankester A. Reactions of normal and tumour cell surfaces to enzymes. I wheat-germ lipase and associated mucopolysaccharides. Proc Natl Acad Sci USA 1963 50:613-9. DOI: https://doi.org/10.1073/pnas.50.4.613
Aub JC, Sanford BH, Cote MN. Studies on the reactivity of tumor and normal cells to wheat germ agglutinin. Proc Natl Acad Sci USA 1965;54:396-9. DOI: https://doi.org/10.1073/pnas.54.2.396
Walker RA. The binding of peroxidase-labelled lectins to human breast epithelium I – normal, hyperplastic and lactating breast. J Pathol 1984;142:279-91. DOI: https://doi.org/10.1002/path.1711420406
Walker RA. The binding of peroxidase-labelled lectins to human breast epithelium II – the reactivity of breast carcinomas to wheat germ agglutinin. J Pathol 1984;144:101-8. DOI: https://doi.org/10.1002/path.1711440205
Dennis JW, Carver JP, Schachter H. Asparagine-linked oligosaccharides in murine tumor cells: comparison of a WGA-resistant (WGAr) nonmetastatic mutant and a related WGA-sensitive (WGAs) metastatic line. J Cell Biol 1984;99:1034-44. DOI: https://doi.org/10.1083/jcb.99.3.1034
Dennis JW. Partial reversion of the metastatic phenotype in a wheatgerm agglutinin-resistant mutant of the murine tumor cell line MDAY-D2 selected with Bandeiraea simplicifolia seed lectin. JNCI 1985;75:1111-20.
Irimura T, Tressler RJ, Nicolson GL. Sialoglycoproteins of murine RAW117 large cell lymphoma/lymphosarcoma sublines of various metastatic colonisation properties. Exp Cell Res 1986;165:403-16. DOI: https://doi.org/10.1016/0014-4827(86)90594-X
Benedetto A, Elia G, Sala A, Belardelli F. Hyposialylation of high-molecular-weight membrane glycoproteins parallels the loss of metastatic potential in wheatgerm agglutinin-resistant Friend leukaemia cells. Int J Cancer 1989 43:126-33. DOI: https://doi.org/10.1002/ijc.2910430124
Elia G, Ferrantini M, Belardelli F, Proietti E, Gresser I, Amici C, Benedetto A. Wheat germ agglutinin-binding protein changes in highly malignant Friend leukaemia cells metastasising to the liver. Clin Exp Metastasis 1988;6:347-62. DOI: https://doi.org/10.1007/BF01760571
Ishikawa M, Dennis JW, Man S, Kerbel RS. Isolation and characterisation of spontaneous wheatgerm agglutinin-resistant human melanoma mutants displaying remarkably different metastatic profiles in nude mice. Cancer Res 1988;48:665-70.
Ishikawa M, Kerbel RS. Characterisation of a metastasis-deficient lectin-resistant human melanoma mutant. Int J Cancer 1989;43:134-9. DOI: https://doi.org/10.1002/ijc.2910430125
Fernandes B, Sagman U, Auger M, Demetrio M, Dennis JW. Beta 1-6 branched oligosaccharides as a marker of tumour progression in human breast and colon neoplasia. Cancer Res 1991;51:718-23.
Dennis JW, Laferte S, Waghorne C Breitman ML, Kerbel RS. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987;236:582-5. DOI: https://doi.org/10.1126/science.2953071
Dennis JW. Different metastatic phenotypes in 2 genetic classes of wheat-germ agglutinin-resistant tumor-cell mutants. Cancer Res 1986 46:4594-600.
Dennis JW, Laferte S. Tumor-cell surface carbohydrate and the metastatic phenotype. Cancer Metast Rev 1987;5:185-204. DOI: https://doi.org/10.1007/BF00046998
Dennis JW, Laferte S, Vanderelst I. Asparagine-linked oligosaccharides in malignant-tumor growth. Biochem Soc Trans 1989;17:29-31. DOI: https://doi.org/10.1042/bst0170029
Ihara S, Miyoshi E, Ko, JH, Murata K, Nakahara S, Honke K, et al. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding β1-6 GlcNAc branching. J Biol Chem 2002;277:16960-7. DOI: https://doi.org/10.1074/jbc.M200673200
Brooks SA. The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histol Histopathol 2000;15:143-58.
Brooks SA, Carter TM, Royle L Harvey DJ, Fry SA, Kinch C, et al. Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies? Anti-cancer Agents Med Chem 2008;8:2-21. DOI: https://doi.org/10.2174/187152008783330860
Hanisch FG, Baldus SE. The Thomsen-Friedenreich (TF) antigen: A critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen. Histol Histopathol 1997;12:263-81.
Limas C, Lange P. T-Antigen in normal and neoplastic urothelium. Cancer 1986;58:1236-45. DOI: https://doi.org/10.1002/1097-0142(19860915)58:6<1236::AID-CNCR2820580611>3.0.CO;2-I
Rhodes JM, Black RR, Savage A. Glycoprotein abnormalities in colonic carcinomata, adenomata, and hyperplastic polyps shown by lectin peroxidase histochemistry. J Clin Pathol 1986;39:1331-4. DOI: https://doi.org/10.1136/jcp.39.12.1331
Leathem AJ, Brooks S. Predictive value of lectin binding on breast cancer recurrence and survival. Lancet 1987;1 1054-6. DOI: https://doi.org/10.1016/S0140-6736(87)90482-X
Brooks SA, Leathem AJC. Prediction of lymph node involvement in breast cancer by detection of altered glycosylation in the primary tumour. Lancet 1991;338:71-4. DOI: https://doi.org/10.1016/0140-6736(91)90071-V
Brooks SA, Leathem AJC, Camplejohn RS, Gregory W. Markers of prognosis in breast cancer - the relationship between HPA binding and histological grade, SPF and ploidy. Breast Cancer Res Treat 1993;25:247-56. DOI: https://doi.org/10.1007/BF00689839
Brooks SA, Leathem AJC. Expression of GalNAc glycoproteins by breast cancers. Brit J Cancer 1995;71:1033-8. DOI: https://doi.org/10.1038/bjc.1995.199
Schumacher U, Adam E, Brooks SA, Leathem AJ. Lectin binding properties of human breast cancer cell lines and human milk with particular reference to Helix pomatia agglutinin. J Histochem Cytochem 1995;43:275-81. DOI: https://doi.org/10.1177/43.3.7868857
Peiris D, Ossondo M, Fry S, Loizidou M, Smith-Ravin J, Dwek MV. Identification of O-linked glycoproteins binding to the lectin Helix pomatia agglutinin as markers of metastatic colorectal cancer. PLoS One 2015;10:e0138345. DOI: https://doi.org/10.1371/journal.pone.0138345
Brooks SA, Hall DMS. Investigations into the potential role of aberrant N-acetylgalactosamine glycans in tumour cell interactions with basement membrane components. Clin Exp Met 2002;19:487-93. DOI: https://doi.org/10.1023/A:1020399516305
Bapu D, Runions J, Kadhim M, Brooks SA. N-acetylgalactosamine glycans function in cancer cell adhesion to endothelial cells: a role for truncated O-glycans in metastatic mechanisms. Cancer Lett 2016;375:367-74. DOI: https://doi.org/10.1016/j.canlet.2016.03.019
Hu D, Tateno H, Hirabayashi J. Lectin engineering, a molecular evolutionary approach to expanding lectin utilities. Molecules 2015;20:7637-56. DOI: https://doi.org/10.3390/molecules20057637
Markiv A, Peiris D, Curley GP, Odell M, Dwek MV. Identification, cloning, and characterization of two N-acetylgalactosamine-binding lectins from the albumen gland of Helix pomatia. J Biol Chem 2011286:20260-6. DOI: https://doi.org/10.1074/jbc.M110.184515
Maenuma K, Yim M, Komatsu K, Hoshino M, Takahashi Y, Bovin N. Use of a library of mutated Maackia amurensis hemagglutinin for profiling the cell lineage and differentiation. Proteomics 2008;8:3274-83. DOI: https://doi.org/10.1002/pmic.200800037
Yabe R, Suzuki R, Kuno A, Fujimoto Z, Jigami Y, Hirabayashi J. Tailoring a novel sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein by natural evolution-mimicry. J Biochem 2007;141:389-99. DOI: https://doi.org/10.1093/jb/mvm043
Yabe R, Itakura Y, Nakamura-Tsuruta S, Iwak J, Kuno A, Hirabayashi J. Engineering a versatile tandem repeat-type α2-6sialic acid-binding lectin. Biochem Biophys Res Comm 2009;384:204-9. DOI: https://doi.org/10.1016/j.bbrc.2009.04.090
Seeberger PH. Chapter 2, Monosaccharide diversity. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., Editors. Essentials of Glycobiology, 4th Edition. Cold Spring Harbor, Cold Spring Harbor Laboratory Press; 2022.
Haslam SM, Freedberg DI, Mulloy B, Dell A, Stanley P, Prestegard JH. Chapter 50, Structural analysis of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., Editors. Essentials of Glycobiology, 4th Edition. Cold Spring Harbor, Cold Spring Harbor Laboratory Press; 2022.
Rudd PM. Karlsson NG, Khoo K-H, Thaysen-Anderson M, Wells L, Packer NH. Chapter 51, Glycomics and glycoproteomics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., Editors. Essentials of Glycobiology, 4th Edition. Cold Spring Harbor, Cold Spring Harbor Laboratory Press; 2022.
Pilobello K, Slawek DE, Mahal LK. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci USA 2007;104:11534-9. DOI: https://doi.org/10.1073/pnas.0704954104
Tateno H, Uchiyama N, Kuno, Togayachi A, Sato T, Narimatsu H, Hirabayashi J. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 2007;17:1138-46. DOI: https://doi.org/10.1093/glycob/cwm084
Hsu K-L, Pilobello KT, Mahal LK. Analysing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2007;2:153-7. DOI: https://doi.org/10.1038/nchembio767
Duverger E, Frison N, Roche A-C, Monsigny M. Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie 2003;85:167-79. DOI: https://doi.org/10.1016/S0300-9084(03)00060-9
Li Y, Wen T, Zhu M, Li L, Wei J, Wu X, et al. Glycoproteomic analysis of tissues from patients with colon cancer using lectin microarrays and nanoLC-MS/MS. Mol Biosyst 2013;9:1877-87. DOI: https://doi.org/10.1039/c3mb00013c
Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2005;2:851-6. DOI: https://doi.org/10.1038/nmeth803
Uchimaya N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J. Development of a lectin microarray based on an evanescent‐field fluorescence principle. Meth Enzymol 2006;415:341-51. DOI: https://doi.org/10.1016/S0076-6879(06)15021-1
Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, et al. Application of lectin microarray to crude samples: Differential glycan profiling of Lec mutants. J Biochem 2006;139:323-7. DOI: https://doi.org/10.1093/jb/mvj070
Fukui S, Feizi T, Galustian C, Lawson AM, Chai W. Oligosaccharide microarrays for high throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 2002;20:1011-7. DOI: https://doi.org/10.1038/nbt735
Park S, Lee MR, Pyo SJ, Shin I. Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J Am Chem Soc 2004;126:4812-9. DOI: https://doi.org/10.1021/ja0391661
Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, et al. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 2007;4:437-44. DOI: https://doi.org/10.1038/nmeth1035
Kim Y, Hyun JY, Shin I. Glycan microarrays from construction to applications. Chemical Soc Rev 2022;51:8276-99. DOI: https://doi.org/10.1039/D2CS00452F
Yu H, Shu J, Li Z. Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 2020;17:27-39. DOI: https://doi.org/10.1080/14789450.2020.1720512
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of lectin microarrays for biomarker discovery. ChemistryOpen 2020;9:285-300. DOI: https://doi.org/10.1002/open.201900326
Tikhonov A, Smoldovskaya O, Feyzhanova G, Kushlinskii N, Rubina, A. Glycan-specific antibodies as potential cancer biomarkers: a focus on microarray applications. Clin Chem Lab Med 2020;58:1611-22. DOI: https://doi.org/10.1515/cclm-2019-1161
Huang W-L, Li Y-G, Lv Y-C, Guan X-H, Ji H-F, Chi B-R. Use of lectin microarray to differentiate gastric cancer from gastric ulcer. World J Gastroenterol 2014;20:5474-82. DOI: https://doi.org/10.3748/wjg.v20.i18.5474
Nakajima K, Inomata M, Iha H, Hiratsuka T, Etoh T, Shiraishi N, et al. Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis. Cancer Med 2015 4:293-302. DOI: https://doi.org/10.1002/cam4.342
Jiang K, Shang S, Li W, Guo K, Qin X, Zhang S, Liu Y. Multiple lectin assays for detecting glycol-alteration of serum GP73 in liver diseases. Glycoconj J 2015;32:657-64. DOI: https://doi.org/10.1007/s10719-015-9614-6

How to Cite

Brooks, S. (2024). Lectins as versatile tools to explore cellular glycosylation. European Journal of Histochemistry, 68(1). https://doi.org/10.4081/ejh.2024.3959

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.