Developmental characteristics of cutaneous telocytes in late embryos of the silky fowl

Submitted: 12 June 2024
Accepted: 23 September 2024
Published: 15 October 2024
Abstract Views: 767
PDF: 125
HTML: 1
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Telocytes (TCs) have been identified in various animals. However, information on TCs in the embryos is still very limited. In this work, the developing skin of the silky fowl was sampled for TCs identification by histology, immunohistochemistry and transmission electron microscopy. In addition, morphological parameters of cutaneous TCs and their location relationships were measured using a morphometry software – ImageJ (FiJi). At the 12th, 16th and 20th day of incubation, in the embryonic skin, telocyte-like cells (TC-L) were observed in the dermis. TCs were PDGFRα+ at the 12th, 16th and 20th day of incubation, but showed CD34+ only at 20th day of incubation in the embryonic dermis. Ultrastructurally, TCs were observed in the dermis at all late embryonic developmental stages. TCs established the homocellular contacts/plasmalemmal adhesion with each other. TCs established heterocellular contacts with melanocytes at 20th day of incubation in the dermis. In addition, the intracellular microvesicles were present in the cytoplasm of TCs. The extracellular microvesicles/exosomes were in close proximity to the TCs. The results confirmed that the locations, immunophenotypes, structural characteristics and relationships of TCs, and revealed the developmental characteristics of cutaneous TCs in late silky fowl embryos.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Popescu LM, Faussone-Pellegrini MS. TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med 2010;14:729-40. DOI: https://doi.org/10.1111/j.1582-4934.2010.01059.x
Cretoiu D, Cretoiu SM, Simionescu AA, Popescu LM. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol Histopathol 2012;27:1067-78.
Kondo A, Kaestner KH. Emerging diverse roles of telocytes. Development 2019;146:dev175018. DOI: https://doi.org/10.1242/dev.175018
Crețoiu SM. Telocytes and other interstitial cells: from structure to function. Int J Mol Sci 2021;22:5271. DOI: https://doi.org/10.3390/ijms22105271
Vannucchi MG. Telocytes and macrophages in the gut: from morphology to function, do the two cell types interact with each other? which helps which? Int J Mol Sci 2022;23:8435. DOI: https://doi.org/10.3390/ijms23158435
Díaz-Flores L, Gutiérrez R, Díaz-Flores L Jr, Goméz MG, Sáez FJ, Madrid JF. Behaviour of telocytes during physiopathological activation. Semin Cell Dev Biol 2016;55:50-61. DOI: https://doi.org/10.1016/j.semcdb.2016.01.035
Zhao J, Birjandi AA, Ahmed M, Redhead Y, Olea JV, Sharpe P. Telocytes regulate macrophages in periodontal disease. eLife 2022;11:e72128. DOI: https://doi.org/10.7554/eLife.72128
Rosa I, Marini M, Manetti M. Telocytes: An emerging component of stem cell niche microenvironment. J Histochem Cytochem 2021;69:795-818. DOI: https://doi.org/10.1369/00221554211025489
Bahar Halpern K, Massalha H, Zwick RK, Moor AE, Castillo-Azofeifa D, Rozenberg M, et al. Lgr5+telocytes are a signaling source at the intestinal villus tip. Nat Commun 2020;11:1936. DOI: https://doi.org/10.1038/s41467-020-15714-x
Bernier-Latmani J, Mauri C, Marcone R, Renevey F, Durot S, He L, et al. ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun 2022;13:3983. DOI: https://doi.org/10.1038/s41467-022-31571-2
Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Tóth B, Kondo A, Massasa EE, et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 2018;557:242-6. DOI: https://doi.org/10.1038/s41586-018-0084-4
Manole CG, Gherghiceanu M, Ceafalan LC, Hinescu ME. Dermal telocytes: a different viewpoint of skin repairing and regeneration. Cells 2022;11:3903. DOI: https://doi.org/10.3390/cells11233903
Aleksandrovych V, Gil K. Telocytes in the tumor microenvironment. Adv Exp Med Biol 2021;1329:205-16. DOI: https://doi.org/10.1007/978-3-030-73119-9_11
Luan C, Xu Y. Matrix metalloproteinase gene mutations and bioinformatics of telocytes in hepatocellular carcinoma. Cell Biol Int 2023;47:110-22. DOI: https://doi.org/10.1002/cbin.11912
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Palmas M, Carrasco JL, et al. Delimiting CD34+ stromal cells/telocytes are resident mesenchymal cells that participate in neovessel formation in skin Kaposi sarcoma. Int J Mol Sci 2023;24:3793. DOI: https://doi.org/10.3390/ijms24043793
Xu T, Zhang H, Zhu Z. Telocytes and endometriosis. Arch Gynecol Obstet 2023;307:39-49. DOI: https://doi.org/10.1007/s00404-022-06634-w
Karasu Y, Önal D, Zırh S, Yersal N, Korkmaz H, Üstün Y, et al. Role of telocytes in the pathogenesis of ectopic pregnancy. Eur Rev Med Pharmacol Sci 2022;26:110-9.
Wei XJ, Chen TQ, Yang XJ. Telocytes in fibrosis diseases: from current findings to future clinical perspectives. Cell Transplant 2022;31:9636897221105252. DOI: https://doi.org/10.1177/09636897221105252
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Rodríguez-Rodriguez R, Hernández-León N, et al. Cd34+ stromal cells/telocytes in normal and pathological skin. Int J Mol Sci 2021;22:7342. DOI: https://doi.org/10.3390/ijms22147342
Moisan F, Oucherif S, Kaulanjan-Checkmodine P, Prey S, Rousseau B, Bonneu M, et al. Critical role of Aquaporin-1 and telocytes in infantile hemangioma response to propranolol beta blockade. Proc Natl Acad Sci USA 2021;118:e2018690118. DOI: https://doi.org/10.1073/pnas.2018690118
Langlois MJ, Servant R, Reyes Nicolás V, Jones C, Roy SAB, Paquet M, et al. Loss of PTEN signaling in foxl1+ mesenchymal telocytes initiates spontaneous colonic neoplasia in mice. Cell Mol Gastroenterol Hepatol 2019;8: 530-3. DOI: https://doi.org/10.1016/j.jcmgh.2019.05.007
Pomerleau V, Nicolas VR, Jurkovic CM, Faucheux N, Lauzon MA, Boisvert FM, et al. FOXL1+ Telocytes in mouse colon orchestrate extracellular matrix biodynamics and wound repair resolution. J Proteomics 2023;271:104755. DOI: https://doi.org/10.1016/j.jprot.2022.104755
Cretoiu D, Radu BM, Banciu A, Banciu DD, Cretoiu SM. Telocytes heterogeneity: From cellular morphology to functional evidence. Semin Cell Dev Biol 2017;64:26-39. DOI: https://doi.org/10.1016/j.semcdb.2016.08.023
Chen X, Zeng J, Huang Y, Gong M, Ye Y, Zhao H, et al. Telocytes and their structural relationships with surrounding cell types in the skin of silky fowl by immunohistochemistrical, transmission electron microscopical and morphometric analysis. Poult Sci 2021;100:101367. DOI: https://doi.org/10.1016/j.psj.2021.101367
Wang Q, Haseeb A, Meng X, Feng Y, Hussain A, Yang P. Telocytes in the esophageal wall of chickens: a tale of subepithelial telocytes. Poult Sci 2022;101:101859. DOI: https://doi.org/10.1016/j.psj.2022.101859
Zhu X, Wang Q, Pawlicki P, Wang Z, Pawlicka B, Meng X, et al. Telocytes and their structural relationships with the sperm storage tube and surrounding cell types in the utero-vaginal junction of the chicken. Front Vet Sci 2022;9:852407. DOI: https://doi.org/10.3389/fvets.2022.852407
Mokhtar DM, Hussien MM. Cellular elements organization in the trachea of mallard (Anas platyrhynchos) with a special reference to its local immunological role. Protoplasma 2020;257:407-20. DOI: https://doi.org/10.1007/s00709-019-01444-5
Anwar SM, Abd-Elhafeez HH, Abdel-Maksoud FM, Abdalla KEH. Morph-anatomic and histochemical study of ileum of goose (Alopochen egyptiacus) with special references to immune cells, mucous and serous goblet cells, telocytes, and dark and light smooth muscle fibers. Microsc Res Tech 2021;84:1328-47. DOI: https://doi.org/10.1002/jemt.23692
Kang Y, Zhu Z, Zheng Y, Wan W, Manole CG, Zhang Q. Skin telocytes versus fibroblasts: two distinct dermal cell populations. J Cell Mol Med 2015;19:2530-9. DOI: https://doi.org/10.1111/jcmm.12671
Meng X, Zhu Z, Ahmed N, Ma Q, Wang Q, Deng B, et al. Dermal microvascular units in domestic pigs (Sus scrofa domestica): role as transdermal passive immune channels. Front Vet Sci 2022;9:891286. DOI: https://doi.org/10.3389/fvets.2022.891286
Sayed RKA, Abd-El Aziz NA, Ibrahim IA, Mokhtar DM. Structural, ultrastructural, and functional aspects of the skin of the upper lip of silver carp (Hypophthalmichthys molitrix). Microsc Res Tech 2021;84:1821-33. DOI: https://doi.org/10.1002/jemt.23741
Manole CG, Simionescu O. The cutaneous telocytes. Adv Exp Med Biol 2016;913:303-23. DOI: https://doi.org/10.1007/978-981-10-1061-3_20
Cretoiu D, Gherghiceanu M, Hummel E, Zimmermann H, Simionescu O, Popescu LM. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med 2015;19:714-22. DOI: https://doi.org/10.1111/jcmm.12578
AbuAli AM, Mokhtar DM, Ali RA, Wassif ET, Abdalla KEH. Cellular elements in the developing caecum of Japanese quail (Coturnix coturnix japonica): morphological, morphometrical, immunohistochemical and electron-microscopic studies. Sci Rep 2019;9:16241. DOI: https://doi.org/10.1038/s41598-019-52335-x
Soliman SA, Madkour FA. Developmental events and cellular changes occurred during esophageal development of quail embryos. Sci Rep 2021;11:7257. DOI: https://doi.org/10.1038/s41598-021-86503-9
Bojin FM, Gavriliuc OI, Cristea MI, Tanasie G, Tatu CS, Panaitescu C, et al. Telocytes within human skeletal muscle stem cell niche. J Cell Mol Med 2011;15:2269-72. DOI: https://doi.org/10.1111/j.1582-4934.2011.01386.x
Romano E, Rosa I, Fioretto BS, Lucattelli E, Innocenti M, Ibba-Manneschi L, et al. A two-step immunomagnetic microbead-based method for the isolation of human primary skin telocytes/CD34+ stromal cells. Int J Mol Sci 2020;21:5877. DOI: https://doi.org/10.3390/ijms21165877
Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008;22:1276-312. DOI: https://doi.org/10.1101/gad.1653708
Karlsson L, Bondjers C, Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 1999;126:2611-21. DOI: https://doi.org/10.1242/dev.126.12.2611
Heitman N, Sennett R, Mok KW, Saxena N, Srivastava D, Martino P, et al. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 2020;367:161-6. DOI: https://doi.org/10.1126/science.aax9131
Bei Y, Wang F, Yang C, Xiao J. Telocytes in regenerative medicine. J Cell Mol Med 2015;19:1441-54. DOI: https://doi.org/10.1111/jcmm.12594
Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med 2010;14:2531-8. DOI: https://doi.org/10.1111/j.1582-4934.2010.01119.x
Wang L, Song D, Wei C, Chen C, Yang Y, Deng X, et al. Telocytes inhibited inflammatory factor expression and enhanced cell migration in LPS-induced skin wound healing models in vitro and in vivo. J Transl Med 2020;18:60. DOI: https://doi.org/10.1186/s12967-020-02217-y
Rosa I, Romano E, Fioretto BS, Guasti D, Ibba-Manneschi L, Matucci-Cerinic M, et al. Scleroderma-like impairment in the network of telocytes/CD34+ stromal cells in the experimental mouse model of bleomycin-induced dermal fibrosis. Int J Mol Sci 2021;22:12407. DOI: https://doi.org/10.3390/ijms222212407
Díaz-Flores L, Gutiérrez R, García MP, Sáez FJ, Aparicio F, Díaz-Flores L Jr, et al. Uptake and intracytoplasmic storage of pigmented particles by human CD34+ stromal cells/telocytes: endocytic property of telocytes. J Cell Mol Med 2014;18:2478-87. DOI: https://doi.org/10.1111/jcmm.12437
Marini M, Manetti M, Rosa I, Ibba-Manneschi L, Sgambati E. Telocytes in human fetal skeletal muscle interstitium during early myogenesis. Acta Histochem 2018;120:397-404. DOI: https://doi.org/10.1016/j.acthis.2018.04.003
Bani D, Nistri S. New insights into the morphogenic role of stromal cells and their relevance for regenerative medicine. lessons from the heart. J Cell Mol Med 2014;18:363-70. DOI: https://doi.org/10.1111/jcmm.12247

How to Cite

Li, H., Chen, J., You, W., Xu, Y., Ye, Y., Zhao, H., … Zhang, H. (2024). Developmental characteristics of cutaneous telocytes in late embryos of the silky fowl. European Journal of Histochemistry, 68(4). https://doi.org/10.4081/ejh.2024.4089

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
124
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A