See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Independent and interactive roles of hirudin and HMGB1 interference in protecting renal function by regulating autophagy, apoptosis, and kidney injury in chronic kidney disease

Accepted: 7 March 2025
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Chronic kidney disease (CKD) is a progressive disorder characterized by renal fibrosis, inflammation, and dysregulated autophagy and apoptosis. High-mobility group box 1 (HMGB1) plays a crucial role in regulating autophagy in CKD. Hirudin, a potent thrombin inhibitor, has demonstrated antifibrotic and anti-inflammatory properties, but its effects on autophagy and apoptosis in CKD remain unclear. In this study, a rat model of renal interstitial fibrosis (RIF) and an HK-2 cell culture model were established to assess the effects of varying doses of hirudin and HMGB1 interference. Molecular and histological analyses, including RTqPCR, Western blot, TUNEL staining, hematoxylin-eosin (H&E) staining, immunofluorescence, and immunohistochemistry (IHC), were performed to assess renal injury, fibrosis, apoptosis, and autophagy-related markers. Hirudin treatment significantly reduced the expression of LC3, ATG12, ATG5, α-SMA, COL1A1, caspase-3, and caspase-9 while increasing P62 levels (p<0.05). It also lowered the renal coefficient (p<0.001) and apoptosis levels. The optimal effective concentration of hirudin in vitro was determined to be 4.8 ATU/mL (p<0.001). HMGB1 interference suppressed autophagy and apoptosis, as indicated by decreased LC3-II/LC3-I, ATG12, ATG5, caspase-3, and caspase-9 levels, increased P62 expression (p<0.001), and reduced apoptosis. However, simultaneous HMGB1 interference in hirudin-treated cells weakened the therapeutic effects of hirudin, leading to increased autophagy and apoptosis markers, decreased P62 levels, and a higher renal coefficient. These findings indicate that hirudin exerts protective effects in CKD by modulating autophagy and apoptosis, potentially through HMGB1 regulation. These findings highlight the therapeutic potential of targeting these mechanisms in renal dysfunction and underscore the necessity for further research to support clinical applications.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- N/A
- Publisher
- PAGEPress Publications, Pavia, Italy
Ethics Approval
all experimental protocols were approved by the Animal Ethics Committee of the Chongqing Traditional Chinese Medicine Hospital, Chongqing, China , All methods are reported in accordance with the ARRIVE guidelinesSupporting Agencies
Chongqing Natural Science Foundation, China, Joint Project of Chongqing Health Commission and Science and Technology Bureau, ChinaHow to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.