Expression of S100β during mouse cochlear development

Submitted: 24 January 2025
Accepted: 4 March 2025
Published: 10 March 2025
Abstract Views: 45
PDF: 15
Supplementary: 4
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In the present study, the expression of S100β was examined in the mouse cochlea from embryonic day 17 (E17) to postnatal day 32 (P32) using immunofluorescence, aiming to explore its possible role in auditory system. At E17, S100β expression was not detected, except in the external cochlear wall. Starting at E18.5, S100β staining appeared in the organ of Corti and the stria vascularis. In the E18.5 and P1 organ of Corti, S100β was confined to the developing pillar cells. By P6, cytoplasmic staining of S100β was evident in the inner and outer pillar cells, forming the tunnel of Corti. Additionally, S100β expression extended medially into the three rows of Deiter’s cells, with labeling of their phalangeal processes. At P8, S100β continued to be expressed in the heads, bodies, and feet of the two pillar cells, as well as in the soma and phalangeal processes of the three rows of Deiter’s cells. In the lateral wall of the P8 cochlea, S100β was expressed not only in the stria vascularis but also in the spiral ligament. Between P10 and P12, S100β expression was maintained in the Deiter’s cells and pillar cells of the organ of Corti, as well as in the lateral wall, and spiral limbus. From P14 onwards, S100β expression ceased in the stria vascularis, though it persisted in the spiral ligament and spiral limbus into adulthood. Within the P14 and P21 organ of Corti, S100β remained in the Deiter’s and pillar cells. S100β immunostaining was not observed in the phalangeal processes of Deiter’s cells but was specifically present in the Deiter’s cell cups at P21. In the adult cochlea (P28 and P32), S100β expression declined in both Deiter’s and pillar cells. The dynamic spatiotemporal changes in S100β expression during cochlear ontogeny suggest its role in cochlear development and hearing function.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
44
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A

Citations

1. Liu W, Chen H, Zhu X, Yu H. Expression of Calbindin-D28K in the Developing and Adult Mouse Cochlea. J Histochem Cytochem 2022;70:583-96. DOI: https://doi.org/10.1369/00221554221119543
2. Liu W, Zhang Y, Liang C, Jiang X. Developmental expression of calretinin in the mouse cochlea. Eur J Histochem 2024;68:4137. DOI: https://doi.org/10.4081/ejh.2024.4137
3. Yang D, Thalmann I, Thalmann R, Simmons DD. Expression of alpha and beta parvalbumin is differentially regulated in the rat organ of corti during development. J Neurobiol 2004;58:479-92. DOI: https://doi.org/10.1002/neu.10289
4. Foster JD, Drescher MJ, Hatfield JS, Drescher DG. Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster. Hear Res 1994;74:67-76. DOI: https://doi.org/10.1016/0378-5955(94)90176-7
5. Udagawa T, Takahashi E, Tatsumi N, Mutai H, Saijo H, Kondo Y, et al. Loss of Pax3 causes reduction of melanocytes in the developing mouse cochlea. Sci Rep 2024;14:2210. DOI: https://doi.org/10.1038/s41598-024-52629-9
6. Rezvanpour A, Phillips JM, Shaw GS. Design of high-affinity S100-target hybrid proteins. Protein Sci 2009;18:2528-536. DOI: https://doi.org/10.1002/pro.267
7. Arrais AC, Melo LHMF, Norrara B, Almeida MAB, Freire KF, Melo AMMF, et al. S100B protein: general characteristics and pathophysiological implications in the Central Nervous System. Int J Neurosci 2022;132:313-21. DOI: https://doi.org/10.1080/00207454.2020.1807979
8. Yardan T, Erenler AK, Baydin A, Aydin K, Cokluk C. Usefulness of S100B protein in neurological disorders. J Pak Med Assoc 2011;61:276-81.
9. Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024;18:1425525. DOI: https://doi.org/10.3389/fnins.2024.1425525
10. Karlsson O, Berg AL, Lindström AK, Hanrieder J, Arnerup G, Roman E, et al. Andersson M. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus.
Toxicol Sci 2012;130:391-404.
11. Lucarini E, Seguella L, Vincenzi M, Parisio C, Micheli L, Toti A, et al. Role of Enteric Glia as Bridging Element between Gut Inflammation and Visceral Pain Consolidation during Acute Colitis in Rats. Biomedicines 2021;9:1671. DOI: https://doi.org/10.3390/biomedicines9111671
12. Manolakis AC, Kapsoritakis AN, Tiaka EK, Potamianos SP. Calprotectin, calgranulin C, and other members of the s100 protein family in inflammatory bowel disease. Dig Dis Sci 2011;56:1601-11. DOI: https://doi.org/10.1007/s10620-010-1494-9
13. Duan K, Liu S, Yi Z, Liu H, Li J, Shi J, et al. S100-beta aggravates spinal cord injury via activation of M1 macrophage phenotype. Musculoskelet Neuronal Interact 2021;21:401-12.
14. Yuan SM. S100 and S100beta: biomarkers of cerebral damage in cardiac surgery with or without the use of cardiopulmonary bypass. Rev Bras Cir Cardiovasc 2014;29:630-41. DOI: https://doi.org/10.5935/1678-9741.20140084
15. Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, et al. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023;16:1286351. DOI: https://doi.org/10.3389/fnmol.2023.1286351
16. Modi PK, Kanungo MS. Age-dependent expression of S100beta in the brain of mice. Cell Mol Neurobiol 2010;30:709-16. DOI: https://doi.org/10.1007/s10571-009-9495-y
17. Hurley PA, Crook JM, Shepherd RK. Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci 2007;26:1813-21. DOI: https://doi.org/10.1111/j.1460-9568.2007.05811.x
18. Buckiová D, Syka J. Calbindin and S100 protein expression in the developing inner ear in mice. J Comp Neurol 2009;513:469-82. DOI: https://doi.org/10.1002/cne.21967
19. Pack AK, Slepecky NB. Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 1995;91:119-35. DOI: https://doi.org/10.1016/0378-5955(95)00173-5
20. Osborn A, Caruana D, Furness DN, Evans MG. Electrical and Immunohistochemical Properties of Cochlear Fibrocytes in 3D Cell Culture and in the Excised Spiral Ligament of Mice. J Assoc Res Otolaryngol 2022;23:183-93. DOI: https://doi.org/10.1007/s10162-021-00833-z
21.Yamashita H, Takahashi M, Bagger-Sjöbäck D. Expression of S-100 protein in the human fetal inner ear.Eur Arch Otorhinolaryngol 1995;252:312-15. DOI: https://doi.org/10.1007/BF00185396
22. Zimmer DB, Van Eldik LJ. Tissue distribution of rat S100 alpha and S100 beta and S100-binding proteins. Am J Physiol. 1987;252:C285-9. DOI: https://doi.org/10.1152/ajpcell.1987.252.3.C285
23..Coppens AG, Kiss R, Heizmann CW, Schäfer BW, Poncelet L. Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development.Brain Res Dev Brain Res 2001;126:191-9. DOI: https://doi.org/10.1016/S0165-3806(00)00153-X
24.Liu WJ, Yang J. Developmental expression of inositol 1, 4, 5 trisphosphate receptor in the post-natal rat cochlea. Eur J Histochem 2015;59:2486. DOI: https://doi.org/10.4081/ejh.2015.2486
25. Liu WJ, Wang CX, Yu H, Liu SF, Yang J. Expression of acetylated tubulin in the postnatal developing mouse cochlea. Eur J Histochem 2018;62:2942. DOI: https://doi.org/10.4081/ejh.2018.2942
26.Hume CR, Bratt DL, Oesterle EC. Expression of LHX3 and SOX2 during
mouse inner ear development.Gene Expr Patterns 2007;7:798-807. DOI: https://doi.org/10.1016/j.modgep.2007.05.002
27.Szarama KB, Gavara N, Petralia RS, Chadwick RS, Kelley MW. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti. BMC Dev Biol 2013;13:6. DOI: https://doi.org/10.1186/1471-213X-13-6
28. Liu WJ, Ming SS, Zhao XB, Zhu X, Gong YX. Developmental expression of high-mobility group box 1 (HMGB1) in the mouse cochlea. Eur J Histochem 2023;67:3704 DOI: https://doi.org/10.4081/ejh.2023.3704
29. Saegusa C, Kakegawa W, Miura E, Aimi T, Mogi S, Harada T, et al. Brain-Specific Angiogenesis Inhibitor 3 Is Expressed in the Cochlea and Is Necessary for Hearing Function in Mice. Int J Mol Sci 2023;24:17092. DOI: https://doi.org/10.3390/ijms242317092
30. Nakazawa K, Spicer SS, Gratton MA, Schulte BA. Localization of actin in basal cells of stria vascularis. Hear Res 1996;96:13-9. DOI: https://doi.org/10.1016/0378-5955(96)00010-X
31. Matsunobu T, Schacht J. Nitric oxide/cyclic GMP pathway attenuates ATP-evoked intracellular calcium increase in supporting cells of the guinea pig cochlea. J Comp Neurol 2000;423:452-61. DOI: https://doi.org/10.1002/1096-9861(20000731)423:3<452::AID-CNE8>3.0.CO;2-Y
32. Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal Development of the Subcellular Structures and Purinergic Signaling of Deiters' Cells along the Tonotopic Axis of the Cochlea Cells 2019;8:1266. DOI: https://doi.org/10.3390/cells8101266
33. von Bohlen und Halbach O. Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus.
Cell Tissue Res 2011;345:1-19.
34. Gattaz WF, Lara DR, Elkis H, Portela LV, Gonçalves CA, Tort AB, et al. Decreased S100-beta protein in schizophrenia: preliminary evidence. Schizophr Res 2000;43:91-5. DOI: https://doi.org/10.1016/S0920-9964(99)00146-2
35. Oesterle EC, Sarthy PV, Rubel EW. Intermediate filaments in the inner ear of normal and experimentally damaged guinea pigs. Hear Res 1990;47:1-16. DOI: https://doi.org/10.1016/0378-5955(90)90162-I
36. Moysan L, Fazekas F, Fekete A, Köles L, Zelles T, Berekméri E. Ca2+ Dynamics of Gap Junction Coupled and Uncoupled Deiters' Cells in the Organ of Corti in Hearing BALB/c Mice. Int J Mol Sci 2023;24:11095. DOI: https://doi.org/10.3390/ijms241311095
37. Rio C, Dikkes P, Liberman MC, Corfas G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol 2002;442:156-62. DOI: https://doi.org/10.1002/cne.10085
38. Ladrech S, Wang J, Simonneau L, Puel JL, Lenoir M. Macrophage contribution to the response of the rat organ of Corti to amikacin. J Neurosci Res 2007;85:1970-9. DOI: https://doi.org/10.1002/jnr.21335
39. Smeti I, Savary E, Capelle V, Hugnot JP, Uziel A, Zine A. Expression of candidate markers for stem/progenitor cells in the inner ears of developing and adult GFAP and nestin promoter-GFP transgenic mice. Gene Expr Patterns 2011;11:22-32. DOI: https://doi.org/10.1016/j.gep.2010.08.008
40. Hertzano R, Puligilla C, Chan SL, Timothy C, Depireux DA, Ahmed Z, et al. CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol 2010;11:407-18. DOI: https://doi.org/10.1007/s10162-010-0211-x
41. Bai X, Xu K, Xie L, Qiu Y, Chen S, Sun Y. The Dual Roles of Triiodothyronine in Regulating the Morphology of Hair Cells and Supporting Cells during Critical Periods of Mouse Cochlear Development. Int J Mol Sci 2023;24:4559. DOI: https://doi.org/10.3390/ijms24054559
42. Yoshida A, Yamamoto N, Kinoshita M, Hiroi N, Hiramoto T, Kang G, et al. Localization of septin proteins in the mouse cochlea. Hear Res 2012;289:40-51. DOI: https://doi.org/10.1016/j.heares.2012.04.015
43. Johnen N, Francart ME, Thelen N, Cloes M, Thiry M. Evidence for a partial epithelial-mesenchymal transition in postnatal stages of rat auditory organ morphogenesis. Histochem Cell Biol 2012;138:477-88. DOI: https://doi.org/10.1007/s00418-012-0969-5
44. Anttonen T, Belevich I, Kirjavainen A, Laos M, Brakebusch C, Jokitalo E, Pirvola U. How to bury the dead: elimination of apoptotic hair cells from the hearing organ of the mouse. J Assoc Res Otolaryngol 2014;15:975-92. DOI: https://doi.org/10.1007/s10162-014-0480-x
45. Whitlon DS. E-cadherin in the mature and developing organ of Corti of the mouse. J Neurocytol 1993;22:1030-8. DOI: https://doi.org/10.1007/BF01235747
46. Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 2006;576:11-21. DOI: https://doi.org/10.1113/jphysiol.2006.112888
47. Ramírez-Camacho R, García-Berrocal JR, Trinidad A, González-García JA, Verdaguer JM, Ibáñez A, et al. Central role of supporting cells in cochlear homeostasis and pathology. Med Hypotheses 2006;67:550-5. DOI: https://doi.org/10.1016/j.mehy.2006.02.044
48. Moyer JR Jr, Furtak SC, McGann JP, Brown TH. Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol Aging 2011;32:1693-706. DOI: https://doi.org/10.1016/j.neurobiolaging.2009.10.001
49. Idrizbegovic E, Salman H, Niu X, Canlon B. Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice. Hear Res 2006:216-217:198-206. DOI: https://doi.org/10.1016/j.heares.2006.01.009
50. Hu J, Ferreira A, Van Eldik LJ. S100beta induces neuronal cell death through
nitric oxide release from astrocytes. J Neurochem 1997;69:2294-301. DOI: https://doi.org/10.1046/j.1471-4159.1997.69062294.x
51. Giuseppe Esposito , Daniele De Filippis, Carla Cirillo, Giovanni Sarnelli, Rosario Cuomo, Teresa Iuvone. The astroglial-derived S100beta protein stimulates the expression of nitric oxide synthase in rodent macrophages through p38 MAP kinase activation. Life Sci 2006;78(23):2707-15. DOI: https://doi.org/10.1016/j.lfs.2005.10.023
52. Ichihara S, Koshikawa T, Nakamura S, Yatabe Y, Kato K. Epithelial hyperplasia of usual type expresses both S100-alpha and S100-beta in a heterogeneous pattern but ductal carcinoma in situ can express only S100-alpha in a monotonous pattern.
Histopathology 1997;30(6):533-41.
53. Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, et al. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis. Sci Rep 2024;14:3038. DOI: https://doi.org/10.1038/s41598-024-52663-7
54. Qin T, So KKH, Hui CC, Sham MH. Ptch1 is essential for cochlear marginal cell differentiation and stria vascularis formation.Cell Rep 2024;43:114083. DOI: https://doi.org/10.1016/j.celrep.2024.114083
55. Hibino H, Nin F, Tsuzuki C, Kurachi Y. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.Pflugers Arch 2010;459:521-55. DOI: https://doi.org/10.1007/s00424-009-0754-z
56. Quraishi IH, Raphael RM. Generation of the endocochlear potential: a biophysical model. Biophys J 2008;94:L64-6. DOI: https://doi.org/10.1529/biophysj.107.128082
57. Walters BJ, Zuo J. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2013;297:68-83. DOI: https://doi.org/10.1016/j.heares.2012.11.009
58. Sadanaga M, Morimitsu T. Development of endocochlear potential and its negative component in mouse cochlea. Hear Res 1995;89:155-61. DOI: https://doi.org/10.1016/0378-5955(95)00133-X
59. Lautermann J, ten Cate WJ, Altenhoff P, Grümmer R, Traub O, Frank H, et al. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 1998;294:415-20. DOI: https://doi.org/10.1007/s004410051192
60. Zhong SX, Hu GH, Liu ZH. Expression of ENaC, SGK1 and Nedd4 isoforms in the cochlea of guinea pig. Folia Histochem Cytobiol 2014;52:144-8. DOI: https://doi.org/10.5603/FHC.2014.0010
61. Grygorowicz T, Wełniak-Kamińska M, Strużyńska L. Early P2X7R-related astrogliosis in autoimmune encephalomyelitis. Mol Cell Neurosci. 2016 :74:1-9. DOI: https://doi.org/10.1016/j.mcn.2016.02.003
62. Shirakawa H, Kaneko S. Physiological and Pathophysiological Roles of Transient Receptor Potential Channels in Microglia-Related CNS Inflammatory Diseases. Biol Pharm Bull 2018;41:1152-7. DOI: https://doi.org/10.1248/bpb.b18-00319
63. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina.Prog Retin Eye Res 2016;51:1-40. DOI: https://doi.org/10.1016/j.preteyeres.2015.06.003
64. Watson N, Ding B, Zhu X, Frisina RD. Chronic inflammation-inflammaging-in the ageing cochlea: A novel target for future presbycusis therapy. Ageing Res Rev 2017:40:142-148. DOI: https://doi.org/10.1016/j.arr.2017.10.002
65. Verschuur C, Agyemang-Prempeh A, Newman TA. Inflammation is associated with a worsening of presbycusis: evidence from the MRC national study of hearing. Int J Audiol 2014; 53:469–75. DOI: https://doi.org/10.3109/14992027.2014.891057
66. Raha-Chowdhury R, Raha AA, Henderson J, Ghaffari SD, Grigorova M, Beresford-Webb J, et al. Impaired Iron Homeostasis and Haematopoiesis Impacts Inflammation in the Ageing Process in Down Syndrome Dementia.J Clin Med 2021;10:2909. DOI: https://doi.org/10.3390/jcm10132909
67. Kaneko A, Naito K, Nakamura S, Miyahara K, Goto K, Obata H, et al. Influence of aging on the peripheral nerve repair process using an artificial nerve conduit.
Exp Ther Med 2021;21:168.
68. Son KH, Son M, Ahn H, Oh S, Yum Y, Choi CH, et al. Age-related accumulation of advanced glycation end-products-albumin, S100beta, and the expressions of advanced glycation end product receptor differ in visceral and subcutaneous fat.
Biochem Biophys Res Commun 2016;477:271-6.
69. Cruzana BC, Hondo E, Kitamura N, Matsuzaki S, Nakagawa M, Yamada J. Differential localization of immunoreactive alpha- and beta-subunits of S-100 protein in feline testis. Anat Histol Embryol 2000;29:83-6. DOI: https://doi.org/10.1046/j.1439-0264.2000.00235.x
70.Yang B, Liang G, Khojasteh S, Wu Z, Yang W, Joseph D, Wei H. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane. PLoS One 2014;9:e99171. DOI: https://doi.org/10.1371/journal.pone.0099171
71. Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol 2014;5:287. DOI: https://doi.org/10.3389/fphar.2014.00287

Supporting Agencies

National Natural Science Foundation of China , Natural Science Foundation of Jiangsu Province, China

How to Cite

Liu, W., Zhang, Y., Liang, C., & Su, L. (2025). Expression of S100β during mouse cochlear development. European Journal of Histochemistry, 69(1). https://doi.org/10.4081/ejh.2025.4189

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.