0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Co-expression of MyHC-15 with other known isoforms in rat muscle spindles

Authors

Muscle spindles are skeletal muscle sensory receptors composed of intrafusal fibres, partially encapsulated by connective tissue capsule. This capsule encloses the central A and B regions while leaving the distal C region extracapsular. Several past studies in rat have shown that muscle spindles typically contain a single bag1 fibre, a single bag2 fibre, and two smaller chain fibres. Intrafusal fibres co-express multiple myosin heavy chain (MyHC) isoforms: -slow or -1, -slow-tonic, -α, -2a, -2b, -embryonic, and -neonatal. While MyHC-2x was previously thought absent, the recently discovered MyHC-15 isoform has been identified in the C region of rat bag fibres. Using antibodies specific for nine MyHC isoforms and analyzing four different rat skeletal muscles—soleus, extensor digitorum longus, and the lateral and medial heads of gastrocnemius—we aimed to further characterize the co-expression pattern of MyHC-15 with other known isoforms and to determine whether MyHC-2x is expressed in rat intrafusal fibres. While rodents are widely used as animal models in skeletal muscle research, notable species-specific differences in MyHC isoform expression exist. Our findings revealed that MyHC-15 expression in rat intrafusal fibres is less abundant than in human fibres. MyHC-15 was primarily observed in bag fibres but was not detected in the C region, contrary to previous reports in both rat and human. We confirmed the absence of MyHC-2x in rat intrafusal fibres. Similarly, MyHC-embryonic and -neonatal were not detected in the analyzed spindles, suggesting that previously used antibodies may have cross-reacted with MyHC-2a and -2b. While our results partially corroborate previous extensive studies, discrepancies suggest that MyHC expression in intrafusal fibres varies not only along the fibre length but also across muscles.

Downloads

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
58%
33%
Days to publication 
48
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A

PFL

1 2 3 4 5
Not useful Very useful

Citations

1. Sun Y, Fede C, Zhao X, Del Felice A, Pirri C, Stecco C. Quantity and distribution of muscle spindles in animal and human muscles. Int J Mol Sci 2024;25:7320. DOI: https://doi.org/10.3390/ijms25137320
2. Walro JM, Kucera J. Why adult mammalian intrafusal and extrafusal fibers contain different myosin heavy-chain isoforms. Trends Neurosci 1999;22:180-4. DOI: https://doi.org/10.1016/S0166-2236(98)01339-3
3. Macefield VG, Knellwolf TP. Functional properties of human muscle spindles. J Neurophysiol 2018;120:452-67. DOI: https://doi.org/10.1152/jn.00071.2018
4. Partanen J V, Lajunen H-R, Liljander SK. Muscle spindles as pain receptors. BMJ Neurol Open 2023;5:e000420. DOI: https://doi.org/10.1136/bmjno-2023-000420
5. Lee C, Chen C. Role of proprioceptors in chronic musculoskeletal pain. Exp Physiol 2024;109:45–54. DOI: https://doi.org/10.1113/EP090989
6. Banks Robert William, Barker D. The muscle spindle. In: Engel A, Franzini-Armstrong C, editors. Myology. New York, McGraw-Hill; 2004. pp. 489-509.
7. Ovalle WK, Smith RS. Histochemical identification of three types of intrafusal muscle fibers in the cat and monkey based on the myosin ATPase reaction. Can J Physiol Pharmacol 1972;50:195-202. DOI: https://doi.org/10.1139/y72-030
8. Banks RW, Barker D, Harker DW, Stacey MJ. Proceedings correlation between ultrastructure and histochemistry of mammalian intrafusal muscle fibres. J Physiol 1975;252:16P-17P.
9. Kucera J, Dorovini-Zis K, Engel WK. Histochemistry of rat intrafusal muscle fibers and their motor innervation. J Histochem Cytochem 1978;26:973-88. DOI: https://doi.org/10.1177/26.11.152786
10. Kucera J, Walro JM, Gorza L. Expression of type-specific MHC isoforms in rat intrafusal muscle fibers. J Histochem Cytochem 1992;40:293-307. DOI: https://doi.org/10.1177/40.2.1552171
11. Lee LA, Karabina A, Broadwell LJ, Leinwand LA. The ancient sarcomeric myosins found in specialized muscles. Skelet Muscle. 2019;9:7. DOI: https://doi.org/10.1186/s13395-019-0192-3
12. Bormioli SP, Sartore S, Vitadello M, Schiaffino S. "Slow" myosins in vertebrate skeletal muscle. An immunofluorescence study. J Cell Biol. 1980;85:672-81. DOI: https://doi.org/10.1083/jcb.85.3.672
13. Maier A, Zak R. Reactivity of rat and rabbit intrafusal fibers with monoclonal antibodies directed against myosin heavy chains. Anat Rec 1989;225:197-202. DOI: https://doi.org/10.1002/ar.1092250304
14. Pedrosa F, Soukup T, Thornell LE. Expression of an alpha cardiac-like myosin heavy chain in muscle spindle fibres. Histochemistry 1990;95:105-13. DOI: https://doi.org/10.1007/BF00266582
15. Pedrosa-Domellöf F, Soukup T, Thornell LE. Rat muscle spindle immunocytochemistry revisited. Histochemistry 1991;96:327-38. DOI: https://doi.org/10.1007/BF00271354
16. te Kronnie G, Donselaar Y, Soukup T, van Raamsdonk W. Immunohistochemical differences in myosin composition among intrafusal muscle fibres. Histochemistry 1981;73:65-74. DOI: https://doi.org/10.1007/BF00493134
17. Soukup T, Pedrosa‐Domellöf F, Thornell L‐E. Expression of myosin heavy chain isoforms and myogenesis of intrafusal fibres in rat muscle spindles. Microsc Res Tech 1995;30:390-407. DOI: https://doi.org/10.1002/jemt.1070300506
18. Desjardins PR, Burkman JM, Shrager JB, Allmond LA, Stedman HH. Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family. Mol Biol Evol 2002;19:375-93. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004093
19. Maier A, Gambke B, Pette D. Immunohistochemical demonstration of embryonic myosin heavy chains in adult mammalian intrafusal fibers. Histochemistry 1988;88:267-71. DOI: https://doi.org/10.1007/BF00570283
20. Butler-Browne GS, Eriksson PO, Laurent C, Thornell LE. Adult human masseter muscle fibers express myosin isozymes characteristic of development. Muscle Nerve 1988;11:610-20. DOI: https://doi.org/10.1002/mus.880110614
21. Wang J, McWhorter DL, Walro JM. Stability of myosin heavy chain isoforms in selectively denervated adult rat muscle spindles. Anat Rec 1997;249:32-43. DOI: https://doi.org/10.1002/(SICI)1097-0185(199709)249:1<32::AID-AR5>3.0.CO;2-H
22. Picquet F, De-Doncker L, Falempin M. Expression of myosin heavy chain isoforms in rat soleus muscle spindles after 19 days of hypergravity. J Histochem Cytochem 2003;51:1479-89. DOI: https://doi.org/10.1177/002215540305101108
23. De-Doncker L, Picquet F, Browne GB, Falempin M. Expression of myosin heavy chain isoforms along intrafusal fibers of rat soleus muscle spindles after 14 days of hindlimb unloading. J Histochem Cytochem 2002;50:1543-54. DOI: https://doi.org/10.1177/002215540205001115
24. Pedrosa F, Thornell LE. Expression of myosin heavy chain isoforms in developing rat muscle spindles. Histochemistry 1990;94:231-244. DOI: https://doi.org/10.1007/BF00266623
25. Liu JX, Eriksson PO, Thornell LE, Pedrosa-Domellöf F. Fiber content and myosin heavy chain composition of muscle spindles in aged human biceps brachii. J Histochem Cytochem 2005;53:445-54. DOI: https://doi.org/10.1369/jhc.4A6257.2005
26. Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 2010;588:353-64. DOI: https://doi.org/10.1113/jphysiol.2009.181008
27. Mascarello F, Toniolo L, Cancellara P, Reggiani C, Maccatrozzo L. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann Anat 2016;207:9-20. DOI: https://doi.org/10.1016/j.aanat.2016.02.007
28. Smerdu V. Expression of MyHC-15 and -2x in human muscle spindles: An immunohistochemical study. J Anat 2023;243:826-41. DOI: https://doi.org/10.1111/joa.13923
29. Smerdu V, Perše M. Effect of carcinogen 1,2-dimethylhydrazine treatment on fiber types in skeletal muscles of male Wistar rats. Physiol Res 2017;66:845-58. DOI: https://doi.org/10.33549/physiolres.933508
30. Rudnicki MA, Jackowski G, Saggin L, McBurney MW. Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol 1990;138:348-58. DOI: https://doi.org/10.1016/0012-1606(90)90202-T
31. Ecob-Prince M, Hill M, Brown W. Immunocytochemical demonstration of myosin heavy chain expression in human muscle. J Neurol Sci 1989;91:71-8. DOI: https://doi.org/10.1016/0022-510X(89)90076-2
32. Schiaffino S. Muscle fiber types identified by monoclonal antibodies to myosin heavy chains. In: Benzi G, Packer L, Siliprandi N, editors. Biochemical aspects of physical exercise. Amsterdam, Elsevier; 1986. pp. 27-34.
33. Lucas CA, Kang LHD, Hoh JFY. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun 2000;272:303-8. DOI: https://doi.org/10.1006/bbrc.2000.2768
34. Sawano S, Komiya Y, Ichitsubo R, Ohkawa Y, Nakamura M, Tatsumi R, et al. A one-step immunostaining method to visualize rodent muscle fiber type within a single specimen. PLoS One 2016;11:e0166080. DOI: https://doi.org/10.1371/journal.pone.0166080
35. Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem 1990;38:257-65. DOI: https://doi.org/10.1177/38.2.2137154
36. Smerdu V, Soukup T. Demonstration of myosin heavy chain isoforms in rat and humans: The specificity of seven available monoclonal antibodies used in immunohistochemical and immunoblotting methods. Eur J Histochem 2008;52:179-89. DOI: https://doi.org/10.4081/1210
37. Hansel NN, Pare PD, Rafaels N, Sin DD, Sandford A, Daley D, et al. Genome-wide association study identification of novel loci associated with airway responsiveness in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2015;53:226-34. DOI: https://doi.org/10.1165/rcmb.2014-0198OC
38. Smerdu V, Perše M. Effect of high-fat mixed lipid diet and swimming on fibre types in skeletal muscles of rats with colon tumours. Eur J Histochem 2018;62:2945. DOI: https://doi.org/10.4081/ejh.2018.2945
39. Bloemink MJ, Deacon JC, Resnicow DI, Leinwand LA, Geeves MA. The superfast human extraocular myosin is kinetically distinct from the fast skeletal IIa, IIb, and IId isoforms. J Biol Chem 2013;288:27469-79. DOI: https://doi.org/10.1074/jbc.M113.488130
40. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol Cell Physiol 1994;267:C1723-8. DOI: https://doi.org/10.1152/ajpcell.1994.267.6.C1723
41. Ennion S, Sant’ Ana Pereira J, Sargeant AJ, Young A, Goldspink G. Characterization of human skeletal muscle fibres according to the myosin heavy chains they express. J Muscle Res Cell Motil 1995;16:35-43. DOI: https://doi.org/10.1007/BF00125308
42. Kucera J, Walro JM. Origin of intrafusal muscle fibers in the rat. Histochemistry 1990;93:567-80. DOI: https://doi.org/10.1007/BF00272199
43. Kucera J, Walro JM. Postnatal expression of myosin heavy chains in muscle spindles of the rat. Anat Embryol (Berl) 1989;179:369-76. DOI: https://doi.org/10.1007/BF00305063
44. Putman CT, Conjard A, Peuker H, Pette D. Alpha-cardiac-like myosin heavy chain MHCI alpha is not upregulated in transforming rat muscle. J Muscle Res Cell Motil 1999;20:155-62. DOI: https://doi.org/10.1023/A:1005430115402
45. Pedrosa F, Butler-Browne GS, Dhoot GK, Fischman DA, Thornell LE. Diversity in expression of myosin heavy chain isoforms and M-band proteins in rat muscle spindles. Histochemistry 1989;92:185-94. DOI: https://doi.org/10.1007/BF00500917
46. Soukup T, Pedrosa F, Thornell LE. Influence of neonatal motor denervation on expression of myosin heavy chain isoforms in rat muscle spindles. Histochemistry 1990;94:245-56. DOI: https://doi.org/10.1007/BF00266624
47. Silberstein L, Webster SG, Travis M, Blau HM. Developmental progression of myosin gene expression in cultured muscle cells. Cell 1986;46:1075-81. DOI: https://doi.org/10.1016/0092-8674(86)90707-5
48. Luo Q, Douglas M, Burkholder T, Sokoloff AJ. Absence of developmental and unconventional myosin heavy chain in human suprahyoid muscles. Muscle Nerve 2014;49:534-44. DOI: https://doi.org/10.1002/mus.23946
49. Ernfors P, Lee KF, Kucera J, Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 1994;77:503-12. DOI: https://doi.org/10.1016/0092-8674(94)90213-5
50. Boyd IA. The response of fast and slow nuclear bag fibres and nuclear chain fibres in isolated cat muscle spindles to fusimotor stimulation, and the effect of intrafusal contraction on the sensory endings. Q J Exp Physiol Cogn Med Sci 1976;61:203-53. DOI: https://doi.org/10.1113/expphysiol.1976.sp002354
51. Edman KAP, Radzyukevich T, Kronborg B. Contractile properties of isolated muscle spindles of the frog. J Physiol 2002;541:905-16. DOI: https://doi.org/10.1113/jphysiol.2001.016220

How to Cite

Smerdu, V., Ugwoke, C. K., & Šink, Žiga. (2025). Co-expression of MyHC-15 with other known isoforms in rat muscle spindles. European Journal of Histochemistry, 69(1). https://doi.org/10.4081/ejh.2025.4192

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.