Involvement of cdks and cyclins in muscle differentiation


Myocyte differentiation is due to transcription of genes that characterize the phenotypic and biochemical identity of differentiated muscle cells. These are the myogenic regulatory factors (MRFs) MyoD, Myf5, myogenin and MRF4. Overexpression of cdk/cyclins has been reported to inhibit the activity of MyoD and prevent myogenic differentiation by different modalities. Unlike other cdk/cyclin complexes, overexpression of cdk9/cyclin T2a, enhances MyoD function and promotes myogenic differentiation. In addition, cyclin T2a interacting with a novel partner, PKNa, is able to strongly enhance the expression of myogenic differentiation markers, such as myogenin and Myosin Heavy Chain. So, cyclin T2a could stimulate myogenic differentiation interacting with different kinase partners Cdk9 or PKNa in a synergistic or antagonistic way.


Download data is not yet available.
Abstract views: 186

PDF: 301
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
De Falco, M., & De Luca, A. (2009). Involvement of cdks and cyclins in muscle differentiation. European Journal of Histochemistry, 50(1), 19-24.