Continuous cyclic mechanical tension increases ank expression in endplate chondrocytes through the TGF-β1 and p38 pathway

Main Article Content

H. Xu *
X. Zhang
H. Wang
Y. Zhang
Y. Shi
X. Zhang
(*) Corresponding Author:
H. Xu | xuhg@maemail.com.cn

Abstract

The normal ANK protein has a strong influence on anti-calcification. It is known that TGF-β1 is also able to induce extracellular inorganic pyrophosphate (ePPi) elaboration via the TGF-β1-induced ank gene expression and the mitogen-activated protein kinase (MAPK) signaling acts as a downstream effector of TGF-β1. We hypothesized that the expression of the ank gene is regulated by mechanics through TGF-β1-p38 pathway. In this study, we investigated the mechanism of short-time mechanical tension-induced ank gene expression. We found that the continuous cyclic mechanical tension (CCMT) increased the ank gene expression in the endplate chondrocytes, and there was an increase in the TGF-β1 expression after CCMT stimulation. The ank gene expression significantly increased when treated by TGF-β1 in a dose-dependent manner and decreased when treated by SB431542 (ALK inhibitor) in a dose-dependent manner. Our study results indicate that CCMT-induced ank gene expressions may be regulated by TGF-β1 and p38 MAPK pathway.

Downloads month by month

Downloads

Download data is not yet available.

Article Details