Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes

  • M. Lehmann Brandenburg University of Technology Cottbus - Senftenberg, Germany.
  • F. Martin Brandenburg University of Technology Cottbus - Senftenberg, Germany.
  • K. Mannigel Brandenburg University of Technology Cottbus - Senftenberg, Germany.
  • K. Kaltschmidt Brandenburg University of Technology Cottbus - Senftenberg, Germany.
  • U. Sack University of Leipzig, Germany.
  • U. Anderer | ursula.anderer@hs-lausitz.de Brandenburg University of Technology Cottbus - Senftenberg, Germany.

Abstract

Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D) cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2) and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.

Downloads

Download data is not yet available.

Author Biographies

M. Lehmann, Brandenburg University of Technology Cottbus - Senftenberg

Department of Cell Biology and Tissue Engineering

F. Martin, Brandenburg University of Technology Cottbus - Senftenberg

Department of Cell Biology and Tissue Engineering

K. Mannigel, Brandenburg University of Technology Cottbus - Senftenberg
Department of Cell Biology and Tissue Engineering
K. Kaltschmidt, Brandenburg University of Technology Cottbus - Senftenberg
Department of Cell Biology and Tissue Engineering
U. Sack, University of Leipzig

Institute of Clinical Immunology, Medical Faculty

Research director of the Translational Centre for Regenerative Medicine (TRM)

U. Anderer, Brandenburg University of Technology Cottbus - Senftenberg

Department of Cell Biology and Tissue Engineering

Dean of the Faculty of Science of the Brandenburg University of Technology Cottbus - Senftenberg

Published
2013-11-05
Section
Original Papers
Keywords:
in vitro cartilage, 3-D cell culture, fusion culture technique, tissue engineering, cell differentiation, extracellular matrix, immunohistochemistry.
Statistics
Abstract views: 2902

PDF: 438
HTML: 941
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
Lehmann, M., Martin, F., Mannigel, K., Kaltschmidt, K., Sack, U., & Anderer, U. (2013). Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes. European Journal of Histochemistry, 57(4), e31. https://doi.org/10.4081/ejh.2013.e31